[1] |
Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition[EB/OL].(2015-04-15) [2023-02-02] https://arxiv.org/pdf/1409.1556v4.pdf.
|
[2] |
Ioffe S, Szegedy C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]. Guangzhou: Proceedings of the Thirty-second International Conference on International Conference on Machine Learning, 2015:448-456.
|
[3] |
He K, Zhang X, Ren S, et al. Deep residual learning forimage recognition[C]. Las Vegas: IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
|
[4] |
Deng J, Dong W, Socher R, et al. Imagenet:A large-scale hierarchical image database[C]. Miami: IEEE Conference on Computer Vision and Pattern Recognition, 2009:248-255.
|
[5] |
Zhou B Lapedriza A, Khosla A, et al. Places:A 10 million image database for scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(6):1452-1464.
|
[6] |
Liu Y, Chen Q, Chen W, et al. Dictionary learning inspired deep network for scene recognition[C]. New Orleans: AAAI Conference on Artificial Intelligence, 2018:7178-7185.
|
[7] |
Yang S, Ramanan D. Multi-scale recognition with DAG-CNNs[C]. Santiago: IEEE International Conference on Computer Vision, 2015:1215-1223.
|
[8] |
Liu S, Tian G, Xu Y. A novel scene classification model combining ResNet based transfer learning and dataaugmentation with a filter[J]. Neurocomputing, 2019, 33(8):191-206.
|
[9] |
Cheng X, Lu J, Feng J, et al. Scene recognition with objectness[J]. Pattern Recognition, 2018, 74(2):474-487.
|
[10] |
Chen G, Song X, Zeng H, et al. Scene recognition with prototype-agnostic scene layout[J]. IEEE Transactions on Image Processing, 2020, 29(1):5877-5888.
|
[11] |
Seong H, Hyun J, Kim E. Fosnet:An end-to-end trainable deep neural network for scene recognition[J]. IEEE Access, 2020(8):82066-82077.
|
[12] |
López-Cifuentes A, Escudero-Vinolo M, Bescós J, et al. Semantic-aware scene recognition[J]. Pattern Recognition, 2020, 10(2):107256-107262.
|
[13] |
Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words:Transformers for image recognition at scale[EB/OL].(2021-06-03) [2023-02-03] https://arxiv.org/abs/2010.11929.
|
[14] |
Wang Z, Wang L, Wang Y, et al. Weakly supervised pat-chnets:Describing and aggregating local patches for scene recognition[J]. IEEE Transactions on Image Processing, 2017, 26(4):2028-2041.
doi: 10.1109/TIP.2017.2666739
pmid: 28207394
|
[15] |
Tang P, Wang H, Kwong S. G-MS2F:Goog LeNet based multistage feature fusion of deep CNN for scene recognition[J]. Neurocomputing, 2017, 22(5):188-197.
|
[16] |
Wang L, Guo S, Huang W, et al. Knowledge guided disambiguation for largescale scene classification with multi-resolution CNNs[J]. IEEE Transactions on Image Processing, 2017, 26(4):2055-2068.
|
[17] |
Zeng H, Song X, Chen G, et al. Amorphous region context modeling for scene recognition[J]. IEEE Transactions on Multimedia, 2020, 24(9):141-151.
|
[18] |
Qiu J, Yang Y, Wang X, et al. Scene essence[C]. Online: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021:8322-8333.
|
[19] |
谢林, 李菲菲, 陈虬. 基于稀疏自动编码机的场景识别算法[J]. 电子科技, 2019, 32(1):38-41.
|
|
Xie Lin, Li Feifei, Chen Qiu. Scene recognition algorithm based on sparse autoencoder[J]. Electronic Science and Technology, 2019, 32(1):38-41.
|
[20] |
Xie L, Lee F, Liu L, et al. Hierarchical coding of convolutional features for scene recognition[J]. IEEE Transactions on Multimedia, 2019, 22(5):1182-1192.
|
[21] |
Hayat M, Khan S H, Bennamoun M, et al. A spatial layout and scale invariant feature representation for indoor scene classification[J]. IEEE Transactions on Image Processing, 2016, 25(10):4829-4841.
|
[22] |
缪冉, 李菲菲, 陈虬. 基于卷积神经网络与多尺度空间编码的场景识别方法[J]. 电子科技, 2020, 33(12):1-7.
|
|
Miao Ran, Li Feifei, Chen Qiu. Scene recognition algorithm based on convolutional neural networks and multi-scale space encoding[J]. Electronic Science and Technology, 2020, 33(12):1-7.
|
[23] |
Shao X, Zhang J, Bao B K, et al. Automatic scene recognition based on constructed knowledge space learning[J]. IEEE Access, 2019(7):102902-102910.
|
[24] |
Lim K L, Jiang X, Yi C. Deep clustering with variational autoencoder[J]. IEEE Signal Processing Letters, 2020, 27(2):231-235.
|
[25] |
Song X, Jiang S, Herranz L. Multiscale multi-feature context modeling for scene recognition in the semantic manifold[J]. IEEE Transactions on Image Processing, 2017, 26(6):2721-2735.
|
[26] |
He K, Chen X, Xie S, et al. Masked autoencoders are scalable vision learners[C]. New Orleans: IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022:15979-15988.
|