[1] |
Godoy D A, Murillo-Cabezas F, Suarez J I, et al. “THE MANTLE” bundle for minimizing cerebral hypoxia in severe traumatic brain injury[J]. Critical Care, 2023, 27(13):1-8.
|
[2] |
Li L Y, Wang Q, Deng L, et al. Chlorogenic acid alleviates hypoxic-ischemic brain injury in neonatal mice[J]. Neural Regeneration Research, 2023, 18(3):568-576.
|
[3] |
车伟坤, 谢淑霞, 李正森, 等. 近红外光谱检测脑血氧饱和度技术对新生儿脑缺氧的早期评估应用[J]. 医学理论与实践, 2019, 32(17):2702-2703.
|
|
Che Weikun, Xie Shuxia, Li Zhengsen, et al. Application of near infrared spectroscopy in early assessment of cerebral hypoxia in newborns[J]. The Journal of Medical Theory and Practice, 2019, 32(17):2702-2703.
|
[4] |
Si J, Zhang X, Li M, et al. Wearable wireless real-time cerebral oximeter for measuring regional cerebral oxygen saturation[J]. Science China Information Sciences, 2021, 64(1):1-10.
|
[5] |
Xin X, Long S, Sun M, et al. The application of complexity analysis in brain blood-oxygen signal[J]. Brain Sciences, 2021, 11(15):1-14.
|
[6] |
Barbara N, Camilleri T A, Camilleri K P. A comparison of EOG baseline drift mitigation techniques[J]. Biomedical Signal Processing and Control, 2020, 57(8):1-9.
|
[7] |
Jensen C A, Acosta Roa A M, Lund J Å, et al. Intrafractional baseline drift during free breathing breast cancer radiation therapy[J]. Acta Oncologica, 2017, 56(6):867-873.
doi: 10.1080/0284186X.2017.1288924
pmid: 28464748
|
[8] |
骆睿鹏, 冯铭科, 黄鑫, 等. 脑电信号预处理方法研究综述[J]. 电子科技, 2023, 36(4):36-43.
|
|
Luo Ruipeng, Feng Mingke, Huang Xin, et al. A review of research on EEG signal preprocessing methods[J]. Electronic Science and Technology, 2023, 36(4):36-43.
|
[9] |
孙铭阳, 谢子殿, 韩龙, 等. 自适应阈值函数小波算法的电机振动信号去噪[J]. 电子科技, 2020, 33(1):63-67.
|
|
Sun Mingyang, Xie Zidian, Han Long, et al. Motor vibration signal denoising of adaptive threshold function wavelet algorithm[J]. Electronic Science and Technology, 2020, 33(1):63-67.
|
[10] |
Zerguine A, Ahmad J, Moinuddin M, et al. An efficient normalized LMS algorithm[J]. Nonlinear Dynamics, 2022, 110(4):3561-3579.
|
[11] |
Liu Z B, Li C Y. A note on the convergence of distributed RLS[J]. IEEE Transactions on Automatic Control, 2022, 67(12):6762-6769.
|
[12] |
Zhang J, Qin X, Yuan J, et al. The extraction method of laser ultrasonic defect signal based on EEMD[J]. Optics Communications, 2021, 84(7):1-9.
|
[13] |
Jicheng L, Gu Y, Chou Y, et al. Seismic data random noise reduction using a method based on improved complementary ensemble EMD and adaptive interval threshold[J]. Exploration Geophysics, 2021, 52(2):137-149.
|
[14] |
Colominas M A, Schlotthauer G, Torres M E. Improved complete ensemble EMD: A suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control, 2014, 14(27):19-29.
|
[15] |
吴凯, 张欢, 刘燕, 等. 基于ICEEMD-PE的脑血氧降噪方法研究[J]. 计算机与数字工程, 2018, 46(8):1511-1515.
|
|
Wu Kai, Zhang Huan, Liu Yan, et al. Method of removing noise based on ICEEMD-PE in cerebral blood oxygenation[J]. Computer and Digital Engineering, 2018, 46(8):1511-1515.
|
[16] |
Jiang J, Tian S, Tian Y, et al. Transient abnormal signal acquisition system based on approximate entropy and sample entropy[J]. Review of Scientific Instruments, 2022, 93(4):1-11.
|
[17] |
杨健, 吴雨佳, 许宁, 等. 基于ICEEMD样本熵分析的管道多点泄漏定位[J]. 消防科学与技术, 2022, 41(6):757-762.
|
|
Yang Jian, Wu Yujia, Xu Ning, et al. Locating of multi-point leakage in pipeline based on ICEEMD sample entropy[J]. Fire Science and Technology, 2022, 41(6):757-762.
|
[18] |
孟明, 杨国雨, 高云园, 等. 基于EEMD与DSS-ApEn的脑电信号消噪方法[J]. 传感技术学报, 2018, 31(10):1539-1546.
|
|
Meng Ming, Yang Guoyu, Gao Yunyuan, et al. EEG denoising method based on EEMD and DSS-ApEn[J]. Chinese Journal of Sensors and Actuators, 2018, 31(10):1539-1546.
|
[19] |
赵明康, 王镇, 齐晨成, 等. 基于FastICA与ICEEMDAN的人脸视频心率检测[J]. 中国生物医学工程学报, 2022, 41(4):508-512.
|
|
Zhao Mingkang, Wang Zhen, Qi Chencheng, et al. Face video heart rate detection based on FastICA and ICEEMDAN[J]. Chinese Journal of Biomedical Engineering, 2022, 41(4):508-512.
|
[20] |
别锋锋, 都腾飞, 庞明军, 等. 基于ICEEMDAN-GRNN神经网络的往复泵故障诊断方法研究[J]. 机械设计与制造, 2021(3):127-131.
|
|
Bie Fengfeng, Du Tengfei, Pang Mingjun, et al. Study on the method of ICEEMDAN-GRNN neural network of reciprocating pump fault diaqnosis[J]. Machine Design and Manufacture, 2021(3):127-131.
|
[21] |
魏炘, 石强, 符文熹, 等. 考虑CEEMDAN样本熵和SVR的短期风速预测[J]. 水电能源科学, 2020, 38(11):207-210.
|
|
Wei Xin, Shi Qiang, Fu Wenxi, et al. Short-term wind speed prediction with CEEMDAN sample entropy and SVR[J]. Water Resources and Power, 2020, 38(11):207-210.
|
[22] |
Jiang J, Tian S, Tian Y, et al. Transient abnormal signal acquisition system based on approximate entropy and sample entropy[J]. Review of Scientific Instruments, 2022, 93(4):1-11.
|
[23] |
但长林, 李三雁, 张彬. 基于样本熵和SVM的滚动轴承故障诊断方法研究[J]. 中国测试, 2020, 46(11):37-42.
|
|
Dan Changlin, Li Sanyan, Zhang Bin. Research on fault diagnosis method for rolling element bearings based on sample entropy and SVM[J]. China Measurement and Test, 2020, 46(11):37-42.
|
[24] |
Yang J, Zhao K, Yu X, et al. Crack classification of fiber-reinforced backfill based on Gaussian mixed moving average filtering method[J]. Cement and Concrete Composites, 2022, 134(4):1-13.
|