电子科技 ›› 2019, Vol. 32 ›› Issue (1): 80-85.doi: 10.16180/j.cnki.issn1007-7820.2019.01.0017

• • 上一篇    下一篇

基于深度学习机制的火警协议智能分析模型

史册,裘炅   

  1. 杭州电子科技大学 计算机学院,浙江 杭州 310018
  • 收稿日期:2017-12-27 出版日期:2019-01-15 发布日期:2018-12-29
  • 作者简介:史册(1989-),男,硕士研究生。研究方向:消防物联。
  • 基金资助:
    浙江省科技计划项目(GK090910001)

The Fire Protocol Intelligent Analysis Model Based on Deep Learning

SHI Ce,QIU Jiong   

  1. School of Computer Science and Technology,Hangzhou Dianzi University,Hangzhou 310018,China
  • Received:2017-12-27 Online:2019-01-15 Published:2018-12-29
  • Supported by:
    Zhejiang Province Science and Technology Project(GK090910001)

摘要:

火灾自动报警器品牌和型号众多,不同品牌或型号的数据协议均有所不同,这为智慧消防的信息集成增加了难度。为解决这一问题,文中提出一种将深度学习技术与火警协议分析模型相结合的SSAESMFA模型。该模型基于栈式稀疏自动编码器和Softmax回归,能够通过对已知消防设备的协议数据进行深度学习,实现对未知协议数据的识别。经过训练,SSAESMFA对协议数据的识别准确率能达到99.83%,实验表明,该模型有较高的对消防设备协议数据的特征提取分类能力,可有效提高智慧消防的信息集成效率。

关键词: 火灾自动报警器, 智能分析, 深度学习, 自动编码器, Softmax回归, 特征提取

Abstract:

The automatic fire alarm had many brands and models, The data protocols of different brands or models were not the same, which made it difficult for information integration of smart fire.To solve the problem,this paper presented a SSAESMFA model that combined deep learning technology with Fire protocol intelligent analysis model.The model based on stack sparse auto encoder and softmax regression,provided the identification of unknown protocol data through deep learning of known protocol data of fire equipment.After training, The accuracy of SSAESMFA in identifying fire alarm protocol was 99.83%, Experiments showed that the model had a high feature extraction and classification ability of fire equipment protocol data,effectively improved the efficiency of information integration of smart fire.

Key words: automatic fire alarm, intelligent analysis, deep learning, auto encoder, Softmax regression, feature extraction

中图分类号: 

  • TP183