电子科技 ›› 2023, Vol. 36 ›› Issue (3): 42-49.doi: 10.16180/j.cnki.issn1007-7820.2023.03.007

• • 上一篇    下一篇

基于VMD和改进TCN的短期光伏发电功率预测

黄圆,魏云冰,童东兵,王维高   

  1. 上海工程技术大学 电子电气工程学院,上海 201620
  • 收稿日期:2012-09-08 出版日期:2023-03-15 发布日期:2023-03-16
  • 作者简介:黄圆(1997-),男,硕士研究生。研究方向:电力市场、新能源发电预测。|魏云冰(1970-),男,博士,教授。研究方向:电力系统自动化、智能运检。
  • 基金资助:
    国家自然科学基金(51507157)

Short-Term Photovoltaic Power Prediction Based on VMD and Improved TCN

HUANG Yuan,WEI Yunbing,TONG Dongbing,WANG Weigao   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science, Shanghai 201620,China
  • Received:2012-09-08 Online:2023-03-15 Published:2023-03-16
  • Supported by:
    National Natural Science Foundation of China(51507157)

摘要:

光伏发电功率存在波动性,且光伏出力易受各种气象特征影响,传统TCN网络容易过度强化空间特性而弱化个体特性。针对上述问题,文中提出一种基于VMD和改进TCN的短期光伏发电功率预测模型。通过VMD将原始光伏发电功率时间序列分解为若干不同频率的模态分量,将各个模态分量以及相对应的气象数据输入至改进TCN网络进行建模学习。利用中心频率法确定VMD的最优分解模态分解个数。在传统TCN预测模型的基础上,使用DropBlock正则化取代Dropout正则化以达到抑制卷积层中信息协同的效果,并引入注意力机制自主挖掘并突出关键气象输入特征的影响,量化各气象因素对光伏发电的影响,从而提高预测精度。以江苏省某光伏电站真实数据为例进行仿真实验,结果表明所提预测方法的RMSE为0.62 MW,MAPE为2.03%。

关键词: 光伏发电功率, 变分模态分解, 时序卷积神经网络, DropBlock正则化, 注意力机制, 功率预测, 时间序列预测, 数据分解

Abstract:

Photovoltaic power generation fluctuates, photovoltaic output is easily affected by various meteorological characteristics, and traditional TCN networks tend to over-enhance spatial characteristics and weaken individual characteristics. In view of these problem, a short-term photovoltaic power generation prediction model based on VMD and improved TCN is proposed in this study. The original photovoltaic power generation time series is decomposed into several modal components of different frequencies through VMD, and each modal component and the corresponding meteorological data are input to the improved TCN network for modeling and learning. The center frequency method is used to determine the optimal decomposition modal number of VMD. On the basis of the traditional TCN prediction model, DropBlock regularization is used to replace Dropout regularization to achieve the effect of suppressing information synergy in the convolutional layer, and the attention mechanism is introduced to autonomously mine and highlight the impact of key meteorological input characteristics and quantify the impact of various meteorological factors on photovoltaic power generation to improve forecasting precision. Based on the real data of a photovoltaic power station in Jiangsu, the simulation experiments show that the RMSE of the proposed prediction method is 0.62 MW and the MAPE is 2.03%.

Key words: photovoltaic power generation, variational modal decomposition, time-series convolutional neural network, DropBlock regularization, attention mechanism, power forecast, time series forecasting, data decomposition

中图分类号: 

  • TP183