电子科技 ›› 2024, Vol. 37 ›› Issue (1): 72-80.doi: 10.16180/j.cnki.issn1007-7820.2024.01.011

• • 上一篇    下一篇

基于深度学习的医学图像分割方法研究进展

李增辉1,王伟2   

  1. 1.上海理工大学 健康科学与工程学院,上海 200093
    2.海军特色医学中心,上海 200433
  • 收稿日期:2022-09-26 出版日期:2024-01-15 发布日期:2024-01-11
  • 作者简介:李增辉(1998-),男,硕士研究生。研究方向:深度学习、医学图像处理。|王伟(1976-),男,博士,研究员。研究方向:海上卫生装备、生物医学工程和医学信息技术。
  • 基金资助:
    全军“双重”学科建设项目(2020SZ10);军内科研项目(HJ20191A020141)

Research Progress of Medical Image Segmentation Method Based on Deep Learning

LI Zenghui1,WANG Wei2   

  1. 1. School of Health Science and Engineering,University of Shanghai for Science and Technology, Shanghai 200093,China
    2. Naval Medical Center of PLA,Shanghai 200433,China
  • Received:2022-09-26 Online:2024-01-15 Published:2024-01-11
  • Supported by:
    Military Scientific Research Project(2020SZ10);Military Scientific Research Project(HJ20191A020141)

摘要:

医学图像处理技术随着深度学习的兴起而飞速发展。基于深度学习的医学图像分割技术成为了分割领域的主流方法,弥补了传统分割方法分割精度不足的缺点,已被应用到一些病理图像的分割任务中。文中对近年来出现的基于深度学习的分割方法进行了介绍和对比,重点综述了U-Net及其改进模型在分割领域的贡献,归纳了常见的医学图像模态、分割算法的评价指标和常用分割数据集,并对医学图像分割技术的未来发展进行了展望。

关键词: 医学图像分割技术, 深度学习, U-Net, 分割算法, 图像处理, 医学图像模态, 评价指标, 分割数据集

Abstract:

Medical image processing technology has developed rapidly with the rise of deep learning. The medical image segmentation technology based on deep learning has become the mainstream method in the segmentation field, which solves the shortcomings of the traditional segmentation method's insufficient segmentation accuracy. This technology has been maturely applied to the segmentation of some pathological images. This study introduces and compares the segmentation methods based on deep learning in recent years, and focuses on the major contributions of U-Net and its improved models in the segmentation field, and summarizes the common medical image modalities and evaluation indicators of segmentation algorithms and commonly used segmentation data sets. Finally, the future development of medical image segmentation technology is prospected.

Key words: medical image segmentation technology, deep learning, U-Net, segmentation algorithm, image processing, medical image modality, evaluation index, segmentation data set

中图分类号: 

  • R318