[1] |
王寅良 . 基于协议智能分析的消控联网平台研究和实践[D]. 杭州:杭州电子科技大学, 2015.
|
|
Wang Yinliang . Based on protocol intelligent analysis of the research and practice of fire alarm network platform[D]. Hangzhou:Hangzhou Dianzi University, 2016.
|
[2] |
张绍龙 . 基于BP神经网络算法的火灾报警智能分析的研究与实践[D]. 杭州:杭州电子科技大学, 2016.
|
|
Zhang Shaolong . The research and practice of fire intelligent analysis based on BP neural network[D]. Hangzhou:Hangzhou Dianzi University, 2016.
|
[3] |
赵丽辉 . 基于BP神经网络的火警误报优化相关问题的研究与实践[D]. 杭州:杭州电子科技大学, 2017.
|
|
Zhao Lihui . Research and practice on fire alarm misinformation optimization based on BP neural network[D]. Hangzhou:Hangzhou Dianzi University, 2017.
|
[4] |
Kolen J F, Kremer S C. Gradient flow in recurrent nets: the difficulty of learning LongTerm dependencies[J]. Wiley-IEEE Press, 2001,28(2):237-243
doi: 10.1109/9780470544037.ch14
|
[5] |
Yoshua Bengio . Foundations and Trend? in machine learning[M]. NY,USA:Now Publishers, 2014.
|
[6] |
徐凤荣 . 基于模糊神经网络的智能火灾探测报警系统的研究[D]. 秦皇岛:燕山大学, 2006.
|
|
Xu Fengrong . Research on intelligent fire detection and alarm system based on fuzzy neural network[D]. Qinhuangdao:Yanshan University, 2006.
|
[7] |
傅天驹 . 基于深度学习的林火图像识别算法及实现[D]. 北京:北京林业大学, 2016.
|
|
Fu Tianju . Forest fire image recognition algorithm and realization based on deep learning[D]. Beijing: Beijing Forestry University, 2016.
|
[8] |
Rose-Pehrsson S L, Shaffer R E, Hart S J , et al. Multi-criteria fire detection systems using a probabilistic neural network[J]. Sensors & Actuators B Chemical, 2000,69(3):325-335.
doi: 10.1016/S0925-4005(00)00481-0
|
[9] |
Bahrepour M, Meratnia N, Havinga P J M .Use of AI techniques for residential fire detection in wireless sensor networks[J]. Ceurws, 2009,35(4):311-321.
|
[10] |
Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks [C].Rio:International Conference on Neural Information Processing Systems, 2007.
|
[11] |
Salimans T, Kingma D P. Weight normalization: a simple reparameterization to accelerate training of deep neural networks [C].Boston:30 th Conference on Neural Information Processing Systems , 2016.
|
[12] |
Vincent P, Larochelle H, Lajoie I , et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010,11(12):3371-3408.
doi: 10.1016/j.mechatronics.2010.09.004
|
[13] |
徐德荣, 陈秀宏, 田进 . 稀疏自编码和Softmax回归的快速高效特征学习[J]. 传感器与微系统, 2017,36(5):55-58.
doi: 10.13873/J.1000-9787(2017)05-0055-04
|
|
Xu Derong, Chen Xiuhong, Tian Jin . Fast and efficient feature learning algorithm based on sparse autoencoder and Softmax regression[J]. Transducer and Microsystem Technologies, 2017,36(5):55-58.
doi: 10.13873/J.1000-9787(2017)05-0055-04
|
[14] |
毛勇华, 桂小林, 李前 , 等. 深度学习应用技术研究[J]. 计算机应用研究, 2016,33(11):3201-3205.
|
|
Mao Yonghua, Gui Xiaolin, Li Qian , et al. Study on application technology of deep learning[J]. Application Research of Computers, 2016,33(11):3201-3205.
|
[15] |
Friedman J, Hastie T, Tibshirani R . Regularization paths for generalized linear models via coordinate descent[J]. Journal of Statistical Software, 2010,33(1):1-8.
|
[16] |
Abadi M, Agarwal A, Barham P , et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems[J]. Arxiv, 2016,16(57):1-19.
|