[1] |
左斌, 李菲菲. 基于注意力机制和Inf-Net的新冠肺炎图像分割方法[J]. 电子科技, 2023, 36(2):22-28.
|
|
Zuo Bin, Li Feifei. An effective segmentation method for COVID-19 CT image based on attention mechanism and Inf-Net[J]. Electronic Science and Technology, 2023, 36(2):22-28.
|
[2] |
沈宁静, 袁健. 基于残差密集连接与注意力融合的人群计数算法[J]. 电子科技, 2022, 35(6):6-12.
|
|
Shen Ningjing, Yuan Jian. Crowd counting algorithm based on residual dense connection and attention fusion[J]. Electronic Science and Technology, 2022, 35(6):6-12.
|
[3] |
Dong C, Loy C C, He K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2):295-307.
|
[4] |
Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:1646-1654.
|
[5] |
Agustsson E, Timofte R. Ntire challenge on single image super-resolution:Dataset and study[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:126-135.
|
[6] |
Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:136-144.
|
[7] |
Zhang Y, Li K, Li K, et al. Image super-resolution using very deep residual channel attention networks[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:286-301.
|
[8] |
Zhang Y, Tian Y, Kong Y, et al. Residual dense network for image superresolution[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:2472-2481.
|
[9] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:7132-7141.
|
[10] |
Lai W S, Huang J B, Ahuja N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:624-632.
|
[11] |
Wang X, Yu K, Wu S, et al. Esrgan:Enhanced super-reso-lution generative adversarial networks[C]. Munich: Proceedings of the European Conference on Computer Vision Workshops, 2018:63-79.
|
[12] |
Xia B, Hang Y, Tian Y, et al. Efficient nonlocal contrastive attention for image super-resolution[C]. Vancouver: Proceedings of the AAAI Conference on Artificial Intelligence, 2022:2759-2767.
|
[13] |
Dai T, Cai J, Zhang Y, et al. Second-order attention net-work for single image super-resolution[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:11065-11074.
|
[14] |
Jaderberg M, Simonyan K, Zisserman A. Spatial transformer networks[J]. Advances in Neural Information Processing Systems, 2015, 28(3):2017-2025.
|
[15] |
Liu J, Zhang W, Tang Y, et al. Residual feature aggregateion network for image super-resolution[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:2359-2368.
|
[16] |
Woo S, Park J, Lee J Y, et al. Cbam:Convolutional block attention module[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:3-19.
|
[17] |
Lu E, Hu X. Image super-resolution via channel attention and spatial attention[J]. Applied Intelligence, 2022, 52(2):2260-2268.
|
[18] |
Wang X, Girshick R, Gupta A, et al. Non-local neural networks[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:7794-7803.
|
[19] |
Liu D, Wen B, Fan Y, et al. Non-local recurrent network for image restoration[J]. Advances in Neural Information Processing Systems, 2018, 31(2):1673-1682.
|
[20] |
Mei Y, Fan Y, Zhou Y. Image super-resolution with nonlocal sparse attention[C]. Nashville: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021:3517-3526.
|
[21] |
Liu Z, Lin Y, Cao Y, et al. Swin transformer:Hierarchical vision transformer using shifted windows[C]. Montreal: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021:10012-10022.
|