Electronic Science and Technology ›› 2019, Vol. 32 ›› Issue (11): 18-22.doi: 10.16180/j.cnki.issn1007-7820.2019.11.004
Previous Articles Next Articles
BEI Chenyuan1,YU Haibin1,PAN Mian1,JIANG Jie1,LÜ Bingyun2
Received:
2018-11-01
Online:
2019-11-15
Published:
2019-11-15
Supported by:
CLC Number:
BEI Chenyuan,YU Haibin,PAN Mian,JIANG Jie,LÜ Bingyun. Gland Cell Image Segmentation Algorithm Based on Improved U-Net Network[J].Electronic Science and Technology, 2019, 32(11): 18-22.
Table 2
Warwick-Qu dataset testing results"
F1score | Object Dice | Object Hausdorff | Sum | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | Rank | B | Rank | A | Rank | B | Rank | A | Rank | B | Rank | ||
Proposed DeepLab-v3 FCN-8 SegNet U-Net Freidburg1 CUMedVision1 Freidburg2 CVML ExB3 ExB2 ExB1 LIB vision4GlaS | 0.897 0.858 0.783 0.862 0.788 0.834 0.868 0.870 0.652 0.896 0.892 0.891 0.777 0.635 | 1 8 11 7 10 9 6 5 13 2 3 4 12 14 | 0.832 0.753 0.692 0.764 0.697 0.605 0.769 0.695 0.541 0.719 0.686 0.703 0.306 0.527 | 1 4 9 3 7 11 2 8 12 5 10 6 14 13 | 0.885 0.864 0.795 0.859 0.781 0.875 0.867 0.876 0.644 0.886 0.884 0.882 0.781 0.737 | 2 8 10 9 11 6 7 5 14 1 3 4 12 13 | 0.825 0.807 0.767 0.804 0.781 0.783 0.800 0.786 0.654 0.765 0.754 0.786 0.617 0.610 | 1 2 9 3 8 7 4 5 12 10 11 5 13 14 | 54.20 62.62 105.04 65.72 102.47 57.19 74.60 57.09 155.43 57.36 54.79 57.41 112.71 107.49 | 1 7 11 8 10 4 9 3 14 5 2 6 13 12 | 119.93 118.51 147.28 124.97 143.75 146.61 153.65 148.47 176.24 159.87 187.44 145.58 190.45 210.10 | 2 1 7 3 4 6 9 8 11 10 12 5 13 14 | 8 30 57 33 50 43 37 34 76 33 41 30 77 80 |
[1] | Winawer S J, Fletcher R H, Miller L , et al. Colorectal cancer screening: clinical guidelines and rationale[J]. Gastroenterology, 1997,113(4):594-642. |
[2] | 陈爱斌, 江霞 . 细胞分割算法研究方法综述[J].电子世界 2011(15):76-79. |
Chen Aibin, Jiang Xia . Review of research methods for cell segmentation algorithms[J].Electronic World, 2011(15):76-79. | |
[3] | Elston C W, Ellis I O . Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up[J]. Histopathology, 2010,19(5):403-410. |
[4] | Gleason D F . Histologic grading of prostate cancer:A perspective[J]. Human Pathology, 1992,23(3):273-279. |
[5] | Fleming M, Ravula S, Tatishchev S F , et al. Colorectal carcinoma: Pathologic aspects[J]. Journal of Gastrointestinal Oncology, 2012,3(3):153-153. |
[6] | 章毓晋 . 图像处理和分析基础[M]. 北京: 高等教育出版社, 2002. |
Zhang Yujin. The basis of image processing and analysis [M]. Beijing: Higher Education Press, 2002. | |
[7] | Gurcan M N, Boucheron L E, Can A , et al. Histopathological image analysis: a review[J].IEEE Reviews in Biomedical Engineering 2009(2):147-147. |
[8] | Altunbay D, Cigir C, Sokmensuer C , et al. Color graphs for automated cancer diagnosis and grading[J]. IEEE Transactions on Biomedical Engineering, 2010,57(3):665-665. |
[9] |
Gunduz Demir C, Kandemir M, Tosun A B , et al. Automatic segmentation of colon glands using object-graphs[J]. Medical Image Analysis, 2010,14(1):1-12.
doi: 10.1016/j.media.2009.09.001 |
[10] |
Fu H, Qiu G, Shu J , et al. A novel polar space random field model for the detection of glandular structures[J]. IEEE Transactions on Medical Imaging, 2014,33(3):764-764.
doi: 10.1109/TMI.2013.2296572 |
[11] | Khasawneh S, Al Wahadni A, Lloyd C H . A stochastic polygons model for glandular structures in colon histology images[J]. IEEE Transactions on Medical Imaging, 2015,34(11):2366-2378. |
[12] | Ronneberger O, Fischer P, Brox T. U-Net:convolutional networks for biomedical image segmentation[M]. Berlin: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015,Springer International Publishing, 2015. |
[13] | Chen H, Qi X, Yu L , et al. DCAN:Deep contour-aware networks for object instance segmentation from histology images[J]. Medical Image Analysis, 2017,36(9):135-146. |
[14] | Xu Y, Li Y, Liu M, et al. Gland instance segmentation by deep multichannel side supervision [C].Athens: International Conference on Medical Image Computing and Computer-Assisted Intervention,Springer,Cham, 2016. |
[15] | Xu Y, Li Y, Wang Y , et al. Gland instance segmentation using deep multichannel neural networks[J]. IEEE Transactions on Biomedical Engineering, 2017,64(12):2901-2912. |
[16] | Raza S E A, Cheung L, Epstein D, et al. MIMONet:gland segmentation using multi-input-multi-output convolutional neural network [C].Edinburgh:Annual Conference on Medical Image Understanding and Analysis,Springer,Cham, 2017. |
[17] | Chen L C, Papandreou G, Kokkinos I , et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(4):834-848. |
[18] | Drelie Gelasca E, Obara B, Fedorov D , et al. A biosegmentation benchmark for evaluation of bioimage analysis methods[J]. BMC Bioinformatics, 2009,10(1):368-368. |
[19] | Sirinukunwattana K, Pluim J P, Chen H , et al. Gland segmentation in colon histology images: The glas challenge contest[J]. Medical Image Analysis, 2017,35(8):489-502. |
[20] | Lecun Y, Bengio Y, Hinton G . Deep learning[J]. Nature, 2015,521(7553):436-436. |
[21] | Yu F, Koltun V, Funkhouser T A. Dilated residual networks [C].Hawaii:Conference on Computer Vision and Pattern Recognition, 2017. |
[22] | Wang P, Chen P, Yuan Y , et al. Understanding convolution for semantic segmentation[C].California:IEEE Winter Conference on Applications of Computer Vision ( WACV), 2018. |
[23] | Hu J, Shen L, Sun G . Squeeze-and-excitation networks[J]. IEEE Transaction on Network, 2017,28(4):523-539. |
[24] | Liu Z, Li X, Luo P, et al. Semantic image segmentation via deep parsing network [C].Santiago:Proceedings of the IEEE International Conference on Computer Vision, 2015. |
[25] | Oktay O, Schlemper J, Folgoc L L , et al. Attention U-Net: learning where to look for the pancreas[J]. IEEE Transaction on Network, 2018,29(2):117-129. |
[26] | Abadi , Martín , Barham P, et al.TensorFlow:A system for large-scale machine learning[J]. IEEE Transaction on Network, 2016,27(9):1024-1037. |
[27] | 何菁, 陈胜 . 一种全新的两步自动化医学图像分割方案[J]. 电子科技, 2016,29(7):85-87. |
He Jing, Chen Sheng . A new two-step automated medical image segmentation scheme[J]. Electronic Science and Technology, 2016,29(7):85-87. |
[1] | WU Weijia,YANG Jian,YUAN Tianchen,SHAO Zhihui. Research on Track Structure Damage Identification Based on Support Vector Machine [J]. Electronic Science and Technology, 2022, 35(2): 27-33. |
[2] | LI Hui,WANG Yicheng. CNNCIFG-Attention Model for Text Sentiment Classifcation [J]. Electronic Science and Technology, 2022, 35(2): 46-51. |
[3] | SHAO Zhihui,YANG Jian,YUAN Tianchen,WU Weijia. Sleeper Diseases Diagnosis Based on Permutation Entropy and Support Vector Machine [J]. Electronic Science and Technology, 2022, 35(2): 52-58. |
[4] | ZONG Shengkang,CHENG Jianpeng,ZHANG Xiliang. Automatic Detection Method of Crane Track Altitude Difference Based on Spot Position [J]. Electronic Science and Technology, 2022, 35(1): 21-28. |
[5] | FANG Xin,WU Yaohui,WU Haozhen. Calculation of Motor Temperature Field Based on Fluent [J]. Electronic Science and Technology, 2021, 34(12): 30-35. |
[6] | PENG Rongjie,PENG Yaxiong,LU Anjiang. Face Recognition System Based on Improved PCA+SVM [J]. Electronic Science and Technology, 2021, 34(12): 56-61. |
[7] | ZHANG Can,CHEN Wei,YIN Zhong. Semantic Segmentation of Cervical Cell Image Based on Weak Supervision [J]. Electronic Science and Technology, 2021, 34(12): 68-74. |
[8] | ZHANG Ying,LIU Zilong,WAN Wei. UAV Vehicle Target Detection Based on Faster R-CNN [J]. Electronic Science and Technology, 2021, 34(11): 11-20. |
[9] | XU Yangyang,SAN Hongjun,CHEN Jiupeng,XIE Feiya,WEI Shunxiang,WANG Wanglin,LIU Liang,CHEN Jia. Numerical Simulation Analysis of Temperature Field in LaserCladding of FL-DLight3-4000 Laser [J]. Electronic Science and Technology, 2021, 34(11): 1-10. |
[10] | SUN Shuai,LIU Zilong,WAN Wei. Improvement of RLS Algorithm Based on Regularization Model [J]. Electronic Science and Technology, 2021, 34(11): 26-30. |
[11] | WANG Xinzhang,GUO Qiang,XU Xiaozhuo. The Analysis of Field Changes for Induction Motor with Broken End Rings [J]. Electronic Science and Technology, 2021, 34(10): 18-26. |
[12] | CHEN Shengli,WANG Xinzhang,XU Xiaozhuo. Electromagnetic Simulation Analysis of Permanent Magnet Synchronous Motor Demagnetization Fault [J]. Electronic Science and Technology, 2021, 34(10): 32-37. |
[13] | ZHAO Chong,CHI Mengmeng,CHU Cong,ZHANG Peng. Research on Motion Simulation and Visual Recognition Algorithm of Guide Dog Walking Mechanism [J]. Electronic Science and Technology, 2021, 34(9): 66-72. |
[14] | LIU Xuan,FU Dongxiang. Multi-Angle Virtual Glasses Trial Technology Based on Face Attitude Estimation [J]. Electronic Science and Technology, 2021, 34(9): 58-65. |
[15] | HAN Shifan,FU Dongxiang. Research on Optical Lens Reconstruction Algorithm Based on NURBS [J]. Electronic Science and Technology, 2021, 34(9): 24-29. |
|