Electronic Science and Technology ›› 2024, Vol. 37 ›› Issue (5): 71-78.doi: 10.16180/j.cnki.issn1007-7820.2024.05.010
Previous Articles Next Articles
ZHU Jinkai1, FANG Lanting1,2,3, JI Xiaowen1, HUANG Jie1,2,3
Received:
2022-12-19
Online:
2024-05-15
Published:
2024-05-21
Supported by:
CLC Number:
ZHU Jinkai, FANG Lanting, JI Xiaowen, HUANG Jie. Multimodal Android Malware Detection Method Based on Behavioral and Semantic Characteristics[J].Electronic Science and Technology, 2024, 37(5): 71-78.
[1] | 潘建文, 崔展齐, 林高毅, 等. Android恶意应用静态检测方法研究综述[J]. 计算机研究与发展, 2023, 60(8):1875-1894. |
Pan Jianwen, Cui Zhanqi, Lin Gaoyi, et al. A review of static android malware detection methods[J]. Journal of Computer Research and Development, 2023, 60(8):1875-1894. | |
[2] | Wang C D. An Android malware dynamic detection method based on service call cooccurrence matrices[J]. Annals of Telecommunications, 2017, 72(9-10):607-615. |
[3] | 范铭, 刘烃, 刘均, 等. 安卓恶意软件检测方法综述[J]. 中国科学(信息科学), 2020, 50(8):1148-1177. |
Fan Ming, Liu Ting, Liu Jun, et al. Android malware detection:A survey[J]. Science in China(Information of S-ciences), 2020, 50(8):1148-1177. | |
[4] | 王志文, 刘广起, 韩晓晖, 等. 基于机器学习的恶意软件识别研究综述[J]. 小型微型计算机系统, 2022, 43(12):2628-2637. |
Wang Zhiwen, Liu Guangqi, Han Xiaohui, et al. Survey on machine-learning-based malware identification research[J]. Journal of Chinese Computer Systems, 2022, 43(12):2628-2637. | |
[5] | 瞿俊, 顾刘军. 基于朴素贝叶斯的安卓恶意软件检测研究[J]. 信息网络安全, 2020(S1):27-30. |
Qu Jun, Gu Liujun. Android malware detection research based on naive Bayesian[J]. Netinfo Security, 2020(S1):27-30. | |
[6] | Teufl P. Malware detection by applying knowledge discovery processes to application metadata on the Android market(Google Play)[J]. Security and Communication Networks, 2016, 9(5):389-419. |
[7] | 褚堃, 万良, 马丹, 等. 深度可分离卷积在Android恶意软件分类的应用研究[J]. 计算机应用研究, 2022, 39(5):1534-1540. |
Chu Kun, Wan Liang, Ma Dan, et al. Research on application of depthwise separable convolution in Android malware classification[J]. Application Research of Computers, 2022, 39(5):1534-1540. | |
[8] | 张雪涛, 王金双, 孙蒙. 基于GCN的安卓恶意软件检测模型[J]. 软件导刊, 2020, 19(7):187-193. |
Zhang Xuetao, Wang Jinshuang, Sun Meng. GCN-based Android malware detection model[J]. Software Guide, 2020, 19(7):187-193. | |
[9] | 李璐. 基于函数调用图的Android恶意软件检测[J]. 现代计算机, 2018, 19(12):28-33. |
Li Lu. Android malware detection based on function call graph[J]. Modern Computer, 2018, 19(12):28-33. | |
[10] |
潘梦竹, 李千目, 邱天. 深度多模态表示学习的研究综述[J]. 计算机工程与应用, 2023, 59(2):48-64.
doi: 10.3778/j.issn.1002-8331.2206-0145 |
Pan Mengzhu, Li Qianmu, Qiu Tian. Survey of research on deep multimodal representation learning[J]. Computer Engineering and Applications, 2023, 59(2):48-64.
doi: 10.3778/j.issn.1002-8331.2206-0145 |
|
[11] | Guen K T, Kang B J, Mina R, et al. A multimodal deep learning method for android malware detection using various features[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(3):773-788. |
[12] | Mohamed G, Abdelmalek A. A new wrapper-based feature selection technique with fireworks algorithm for Android malware detection[J]. International Journal of Software Science and Computational Intelligence, 2022, 14(1):1-19. |
[13] | Íbrahim Doĝru A, Önder M. AppPerm analyzer:Malware detection system based on Android permissions and permission groups[J]. International Journal of Software Engineering and Knowledge Engineering, 2020, 30(3):24-30. |
[14] | Altaher A, Barukab O M. Intelligent hybrid approach for Android malware detection based on permissions and API calls[J]. International Journal of Advanced Computer Science and Applications, 2017, 8(6):60-67. |
[15] | Lu Y, Zulie P, Jingju L, et al. Android malware detectiontechnology based on improved Bayesian classification[C]. Shenyang: The Third International Conference on Instrumentation,Measurement,Computer,Communication and Control, 2013:112-130. |
[16] | Khariwal K, Gupta R, Singh J, et al. R-MFDroid:Android malware detection using ranked manifest file components[J]. International Journal of Innovative Technology and Exploring Engineering, 2021, 10(7):55-64. |
[17] | Wu D J, Mao C H, Wei H M, et al. DroidMat:Android malware detection through manifest and API calls tracing[C]. Tokyo: The Seventh Asia Joint Conference onInformation Security, 2012:172-180. |
[18] | Thongsuwan S, Jaiyen S, Padcharoen A, et al. ConvXGB:A new deep learning model for classification problems based on CNN and XGBoost[J]. Nuclear Engineering and Technology, 2021, 53(2):522-531. |
[19] | Fang W, Zhang L, Wang C, et al. AMC-MDL:A novel approach of Android malware classification using multimodel deep learning[C]. Calgary: IEEE International Conference on Dependable,Autonomic and Secure Computing,International Conference on Pervasive Intelligence and Computing,International Conference on Cloud and Big Data Computing,International Conference on Cyber Science and Technology Congress, 2020:108-127. |
[20] | Jerome Q, Allix K, State R, et al. Using opcode-sequences to detect malicious Android applications[C]. New South Wales: IEEE International Conference on Communications, 2014:76-90. |
[21] | Ding Y, Hu J, Xu W, et al. A deep feature fusion method for Android malware detection[C]. Kobe: International Conference on Machine Learning and Cybernetics IEEE, 2019:1121-1134. |
[22] | Yan J P, Qi Y, Rao Q F. LSTM-based hierarchical denoising network for Android malware detection[J]. Security and Communication Networks, 2018, 20(8):1-18. |
[23] | Amin M, Tanveer T A, Tehseen M, et al. Static malware detection and attribution in android bytecode throughan end-to-end deep system[J]. Future Generation Computer Systems, 2020, 10(2):112-126. |
[24] | Shikha B, Sunil K M. GENDroid:A graph-based ensemble classifier for detecting Android malware[J]. International Journal of Information and Computer Security, 2022, 18(3-4):327-347. |
[25] | Cai M, Jiang Y, Gao C, et al. Learning features from enhanced function call graphs for Android malware detection[J]. Neurocomputing, 2021, 42(3):301-307. |
[26] | 杨铭, 张健. 基于图像识别的恶意软件静态检测模型[J]. 信息网络安全, 2021, 21(10):25-32. |
Yang Ming, Zhang Jian. Static detection model based on image recognition[J]. Netinfo Security, 2021, 21(10):25-32. | |
[27] | 朱斌, 刘子龙. 基于新型初始模块的卷积神经网络图像分类方法[J]. 电子科技, 2021, 34(2):52-56. |
Zhu Bin, Liu Zilong. Image classification method using convolutional neural network based on new initial module[J]. Electronic Science and Technology, 2021, 34(2):52-56. | |
[28] | 程俊华, 曾国辉, 刘瑾. 基于深度学习的复杂背景图像分类方法研[J]. 电子科技, 2020, 33(12):59-66. |
Cheng Junhua, Zeng Guohui, Liu Jin. Research on complex background image classification method based on deep learning[J]. Electronic Science and Technology, 2020, 33(12):59-66. | |
[29] |
张锐, 杨吉云. 基于权限相关性的Android恶意软件检测[J]. 计算机应用, 2014, 34(5):1322-1325.
doi: 10.11772/j.issn.1001-9081.2014.05.1322 |
Zhang Rui, Yang Jiyun. Android malware detection based on permission correlation[J]. Journal of Computer Applications, 2014, 34(5):1322-1325.
doi: 10.11772/j.issn.1001-9081.2014.05.1322 |
|
[30] | 王思远, 张仰森, 曾健荣, 等. Android恶意软件检测方法综述[J]. 计算机应用与软件, 2021, 38(9):1-9. |
Wang Siyuan, Zhang Yangsen, Zeng Jianrong, et al. Overview of Android malware detection methods[J]. Computer Applications and Software, 2021, 38(9):1-9. | |
[31] | 李剑, 朱月俊. 基于权限的安卓恶意软件检测方法[J]. 信息安全研究, 2017, 3(9):817-822. |
Li Jian, Zhu Yuejun. Detection method of Android malware by using permission[J]. Journal of Information Security Research, 2017, 3(9):817-822. | |
[32] | 张雪涛, 孙蒙, 王金双. 基于操作码的安卓恶意代码多粒度快速检测方法[J]. 网络与信息安全学报, 2019, 5(6):85-94. |
Zhang Xuetao, Sun Meng, Wang Jinshuang. Multigranularity Android malware fast detection based on opcode[J]. Chinese Journal of Network and Information Security, 2019, 5(6):85-94. | |
[33] | 陈铁明, 徐志威. 基于API调用序列的Android恶意代码检测方法研究[J]. 浙江工业大学学报, 2018, 46(2):147-154. |
Chen Tieming, Xu Zhiwei. Research on detection of Android malicious code based on API call sequence[J]. Journal of Zhejiang University of Technology, 2018, 46(2):147-154. | |
[34] |
陈铁明, 项彬彬, 吕明琪, 等. 基于字节码图像和深度学习的Android恶意应用检测[J]. 电信科学, 2019, 35(1):9-17.
doi: 10.11959/j.issn.1000-0801.2019022 |
Chen Tieming, Xiang Binbin, Lv Mingqi, et al. Android malware detection method based on bytecode image and deep learning[J]. Telecommunications Science, 2019, 35(1):9-17.
doi: 10.11959/j.issn.1000-0801.2019022 |
|
[35] | 李自清. 基于函数调用图的Android恶意代码检测方法研究[J]. 计算机测量与控制 2017, 25(10):198-201,205. |
Li Ziqing. Android malicious code detection method based on function call graph[J]. Computer Measurement and Control, 2017, 25(10):198-201,205. |
[1] | PANG Jiangfei, SUN Zhanquan. Multi-Encoder Transformer for End-to-End Speech Recognition [J]. Electronic Science and Technology, 2024, 37(4): 1-7. |
[2] | QIN Xiaofei, HE Wen, BAN Dongxian, GUO Hongyu, YU Jing. Research on Fast 3D Hand Keypoint Detection Algorithm Based on Anchor [J]. Electronic Science and Technology, 2024, 37(4): 77-86. |
[3] | MA Wenjie, ZHANG Xuanxiong. Research on Blind Roads and Obstacle Recognition Algorithm Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(3): 75-83. |
[4] | TIAN Zhixin,XU Zhen,MAO Jian,LIN Binbin,LIAO Wei. Classification Method of Steel Surface Defects Based on Multi-Scale Feature Fusion [J]. Electronic Science and Technology, 2024, 37(2): 87-95. |
[5] | ZHA Junwei,ZHANG Hongyan. Dynamic Receptive Field Feature Selection Dehazing Network [J]. Electronic Science and Technology, 2023, 36(7): 56-63. |
[6] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[7] | WANG Qiao,HU Chunyan,LI Feifei. Scene Recognition Algorithm Based on Deep Transfer Learning and Multi-Scale Feature Fusion [J]. Electronic Science and Technology, 2023, 36(11): 19-27. |
[8] | BI Jiazhen,SHEN Tuo,ZHANG Xuanxiong. A Research on Distance Measurement Between Trains in Rail Transit Based on Machine Vision [J]. Electronic Science and Technology, 2022, 35(9): 37-43. |
[9] | DENG Yuan,SHI Yiping,JIANG Yueying,ZHU Yamei,LIU Jin. Infant Expression Recognition Algorithm Based on MobileNetV2 and LBP Feature Fusion [J]. Electronic Science and Technology, 2022, 35(8): 47-52. |
[10] | SUN Kang,XUAN Xuyang,LIU Penghui,ZHAO Laijun,LONG Jie. Partial Discharge Pattern Recognition of Cable Based on CNN-DCGAN under Small Data [J]. Electronic Science and Technology, 2022, 35(7): 7-13. |
[11] | SHEN Ningjing,YUAN Jian. Crowd Counting Algorithm Based on Residual Dense Connection and Attention Fusion [J]. Electronic Science and Technology, 2022, 35(6): 6-12. |
[12] | Lingyu JI,Yongbin GAO,Chenglu ZHAO,Xianhua TANG,Kaicheng XU,Jiacheng XU. CTA Segmentation Algorithm of Abdominal Artery Based on 3D Fully Convolutional Network [J]. Electronic Science and Technology, 2022, 35(3): 38-44. |
[13] | SU Bo,CHAI Ziqiang,WANG Li,CUI Shuaihua. Eight-Section Brocade Sequence Action Recognition and Evaluation Based on Pose Estimation [J]. Electronic Science and Technology, 2022, 35(12): 84-90. |
[14] | ZHAO Chong,CHI Mengmeng,CHU Cong,ZHANG Peng. Research on Motion Simulation and Visual Recognition Algorithm of Guide Dog Walking Mechanism [J]. Electronic Science and Technology, 2021, 34(9): 66-72. |
[15] | MA Lixin,DOU Chenfei,SONG Chencan,YANG Tianxiao. Insulator Nondestructive Testing Based on Feature Fusion CNN [J]. Electronic Science and Technology, 2021, 34(7): 26-30. |
|