Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (3): 69-75.doi: 10.16180/j.cnki.issn1007-7820.2023.03.011
Previous Articles Next Articles
ZHU Tuo,LI Zheng,ZHANG Kai,LI Zi
Received:
2021-09-23
Online:
2023-03-15
Published:
2023-03-16
Supported by:
CLC Number:
ZHU Tuo,LI Zheng,ZHANG Kai,LI Zi. Optimal Design of Permanent Magnet Synchronous Machine Based on Analytic Model[J].Electronic Science and Technology, 2023, 36(3): 69-75.
Table 1.
Machine data and parameters"
项目 | 符号 | 数值 | 单位 |
---|---|---|---|
相电流幅值 | I | 250 | A |
转子转速 | nr | 1 000 | rad·min-1 |
极对数 | p | 7 | - |
槽数 | Qs | 12 | - |
每相绕组匝数 | N | 20 | - |
绕组节距 | αy | π/6 | rad |
每极永磁体分段数 | s | 2 | - |
极弧系数 | αp | 0.9 | - |
电机轴向长度 | La | 0.1 | m |
定子内径 | Rs | 0.17 | m |
永磁体外径 | Rm | 0.168 | m |
转子轭外径 | Rr | 0.153 | m |
定子槽口宽 | b0 | 0.01 | m |
真空绝对磁导率 | μ0 | 4π·10-7 | H·m-1 |
永磁体相对磁导率 | μm | 1.099 778 540 6 | - |
永磁体电导率 | σm | 625 000 | S·m-1 |
[1] |
Zhang Z M, Deng Z Q, Gu C, et al. Reduction of rotorharmonic eddy-current loss of high-speed PM BLDCmotors by using a split-phase winding method[J]. IEEE Transactions on Energy Conversion, 2019, 34(3):1593-1602.
doi: 10.1109/TEC.60 |
[2] | 李抑非, 蒋全. 永磁同步电机转子初始位置检测技术研究进展[J]. 电子科技, 2021, 34(4):24-33. |
Li Yifei, Jiang Quan. Research development of initial rotor position detection of permanent magnet synchronous motors[J]. Electronic Science and Technology, 2021, 34(4):24-33. | |
[3] | Huang X Y, Zhu M C, Chen W, et al. Dynamic reluctance mesh modeling and losses evaluation of permanent magnet traction motor[J]. IEEE Transactions on Magnetics, 2017, 53(6):1-4. |
[4] |
Chiodetto N, Bianchi N, Alberti L. Improved analytical estimation of rotor losses in high-speed surface mounted PM synchronous machines[J]. IEEE Transactions on Industry Applications, 2017, 53(4):3548-3556.
doi: 10.1109/TIA.2017.2693178 |
[5] | Nuscheler R. Two-dimensional analytical model for eddy-current loss calculation in the magnets and solidrotor yokes of permanent magnet synchronous machines[C]. Vilamoura: Proceedings of the Eighteenth International Conference on Electrical Machines, 2008. |
[6] | Nuscheler R. Two-dimensional analytical model for eddy-current rotor loss calculation of PMS machines with concentrated stator windings and a conductive shield for the magnets[C]. Rome: Proceedings of the International Conference on Electrical Machines, 2010. |
[7] | Barriere O, Hlioui S, Ahmed H B, et al. An analytical model for the computation of no-load eddy-current losses in the rotor of a permanent magnet synchronous machine[J]. IEEE Transactions on Magnetics, 2016, 52(6):1-13. |
[8] | Chen L, Wang J B, Nair S S. An analytical method forpredicting 3-D eddy current Loss in permanent magnet machines based on generalized image theory[J]. IEEE Transactions on Magnetics, 2016, 52(6):1-11. |
[9] | Nair S S, Wang J B, Chen L, et al. Prediction of 3-D high-frequency eddy-current loss in rotor magnets of SPM machines[J]. IEEE Transactions on Magnetics, 2016, 52(9):1-10. |
[10] | 沈建新, 韩婷, 尧磊, 等. 提高永磁体电阻率对降低高速永磁交流电机转子涡流损耗的有效性分析[J]. 电工技术学报, 2020, 35(9):2074-2078. |
Shen Jianxin, Han Ting, Yao Lei, et al. Is higher resistivity of magnet beneficial to reduce rotor eddy current loss in high-speed permanent magnets AC machines?[J]. Transactions of China Electrotechnical Society, 2020, 35(9):2074-2078. | |
[11] | 张忠明, 邓智泉, 孙权贵, 等. 铜屏蔽层对高速永磁无刷直流电机转子涡流损耗和应力的影响分析[J]. 中国电机工程学报, 2018, 38(8):2476-2486. |
Zhang Zhongming, Deng Zhiquan, Sun Quangui, et al. Influences of copper shield on eddy-current loss and stress for a rotor of high-speed PM BLDC motor[J]. Proceedings of the CSEE, 2018, 38(8):2476-2486. | |
[12] | Castagnaro E, Berardi G, Bianchi N. A rapid estimationof the rotor losses in high speed synchronous PM machines[C]. Budapest: Proceedings of IEEE the Eighteenth International Power Electronics and Motion Control Conference, 2018. |
[13] | 李琛, 章跃进, 井立兵. Halbach阵列半闭口槽永磁电机全局解析法研究[J]. 中国电机工程学报, 2013, 33(33):85-94. |
Li Chen, Zhang Yuejin, Jing Libing. Researches on an exact analytical method of Halbach-array permanent-magnet motors with semi-closed slots[J]. Proceedings of the CSEE, 2013, 33(33):85-94. | |
[14] | 范坚坚, 吴建华, 李创平, 等. 分块式Halbach型磁钢的永磁同步电机解析[J]. 电工技术学报, 2013, 28(3):35-42. |
Fan Jianjian, Wu Jianhua, Li Chuangping, et al. Solution of permanent magnet synchronous motors with partition between poles Halbach magnet[J]. Transactions of China Electrotechnical Society, 2013, 28(3):35-42. | |
[15] | 寇宝泉, 曹海川, 李伟力, 等. 新型双层Halbach永磁阵列的解析分析[J]. 电工技术学报, 2015, 30(10):68-76. |
Kou Baoquan, Cao Haichuan, Li Weili, et al. Analytical analysis of a novel double layer Halbach permanent magnet array[J]. Transactions of China Electrotechnical Society, 2015, 30(10):68-76. | |
[16] | 陈浈斐. 表贴式永磁同步电机建模、分析与设计[D]. 天津: 天津大学, 2014. |
Chen Zhenfei. Modeling,analyzing and designing of surface-mounted permanent-magnet synchronous machines[D]. Tianjin: Tianjin University, 2014. | |
[17] | 郑萍, 雷雨, 吴帆, 等. 电动汽车用六相永磁容错电机的分析和设计[J]. 电机与控制学报, 2012, 17(6):29-36. |
Zheng Ping, Lei Yu, Wu Fan, et al. Analysis and designof a six-phase fault-tolerant PM machine used for EVs[J]. Electric Machines and Control, 2012, 17(6):29-36. | |
[18] | 郭思源. 永磁电机磁场解析方法及其应用研究[D]. 武汉: 华中科技大学, 2014. |
Guo Siyuan. Analytical solution of magnetic field in permanent magent machines:theory and application[D]. Wuhan: Huazhong University of Science & Technology, 2014 |
[1] | WANG Ruixin,YAO Lei. Optimization Design of Air Gap Structure of Series Compensating Saturated Core Fault Current Limiter [J]. Electronic Science and Technology, 2022, 35(8): 21-26. |
[2] | HUANG Yuansheng,JIANG Yuqing,WANG Jing. Research on Adaptability Evaluation of Distribution Network Based on Improved TOPSIS-PSO-SVM [J]. Electronic Science and Technology, 2022, 35(6): 54-63. |
[3] | Xuanfeng SHANGGUAN,Tingyu YANG,Jinsong WEI,Yongjian LIU. Design Analysis and Modeling Simulation of Brushless DC Motor [J]. Electronic Science and Technology, 2022, 35(3): 71-78. |
[4] | CHEN Wanfen,WANG Yujia,LIN Weixing. Surrogate Assisted Multi-Objective Particle Swarm Optimization Based on Combined Infill Sampling Criterion [J]. Electronic Science and Technology, 2022, 35(12): 26-34. |
[5] | SHANGGUAN Xuanfeng,LIU Yongjian,YANG Tingyu,WEI Jinsong. Operation Characteristics Analysis of Four-Poles Universal Motor Based on Maxwell [J]. Electronic Science and Technology, 2022, 35(1): 60-65. |
[6] | PENG Xinglai,LI Zheng. Comparative Analysis of Performance of Electric Excitation Concentrated Winding Motor [J]. Electronic Science and Technology, 2021, 34(12): 19-24. |
[7] | ZHU Chengming,WEI Yunbing,JIANG Chengcheng,ZHU Jian'an. Estimation Model of Wind Power Reserve Capacity Based on PSO-BP Neural Network [J]. Electronic Science and Technology, 2021, 34(12): 36-41. |
[8] | ZHAO Shiyan, XIE Zidian, DING Kangkang, CUI Hanqing. Particle Swarm Optimization BP-PID of Rotor Variable Frequency Speed in Mine Hoisting System [J]. Electronic Science and Technology, 2021, 34(1): 43-49. |
[9] | WU Qiang,ZHANG Wei,YANG Huiting,WANG Chaoying. Application of Particle Swarm Optimization Based on Beetle Antennae Search Algorithm in PID Parameter Tuning [J]. Electronic Science and Technology, 2020, 33(6): 18-23. |
[10] | LIU Jiansong,LIN Pengrong,HUANG Yingzhuo,LIAN Binhao. Research on TSV Structure of 2.5D Silicon Interposer [J]. Electronic Science and Technology, 2020, 33(1): 46-50. |
[11] | PAN Shui. Research on Minimum Mean Square Error Fitting Height Estimation Algorithm for Radar Altimeter [J]. Electronic Science and Technology, 2019, 32(8): 22-26. |
[12] | JI Shengyang,WANG Xudong,XU Xiaozhuo,SUN Weixiang,SHI Kaining. Research on Direct Torque Control of Permanent Magnet Synchronous Motor Based on Sliding Mode Control [J]. Electronic Science and Technology, 2019, 32(7): 1-5. |
[13] | LAN Jiman. Particle Swarm Optimization Surface Defect Recognition Algorithm Based on Radial Basis Neural Network [J]. Electronic Science and Technology, 2019, 32(5): 92-95. |
[14] | ZHANG Jinwei,LI Guoping. Economic Operation of Microgrid Considering Operational Risk and Customer Satisfaction [J]. Electronic Science and Technology, 2019, 32(3): 26-31. |
[15] | LÜ Tengfei,CHEN Shiping,WANG Lei. Cost Optimization Model for Cloud Resource Allocation Based on Packet Cluster [J]. Electronic Science and Technology, 2019, 32(3): 31-36. |
|