电子科技 ›› 2022, Vol. 35 ›› Issue (5): 56-59.doi: 10.16180/j.cnki.issn1007-7820.2022.05.009

• • 上一篇    下一篇

基于机器学习的肿瘤智能辅助诊断方法

程顺达1,程颖2,孙士江1   

  1. 1.河北省中医院,河北 石家庄 050000
    2.河北省卫健委 统计信息中心,河北 石家庄 050051
  • 收稿日期:2020-12-04 出版日期:2022-05-25 发布日期:2022-05-27
  • 作者简介:程顺达(1976-),男,高级工程师。研究方向:计算机工程与应用。
  • 基金资助:
    国家中医临床研究基地项目(国中医药办科技函[2018]18);河北省中医药管理局科研计划项目(KTY2020104)

Tumor Intelligent Auxiliary Diagnosis Method Based on Machine Learning

CHENG Shunda1,CHENG Ying2,SUN Shijiang1   

  1. 1. Hebei Hospital of Traditional Chinese Medicine,Shijiazhuang 050000,China
    2. Statistical Information Center,Hebei Health Commission, Shijiazhuang 050051,China
  • Received:2020-12-04 Online:2022-05-25 Published:2022-05-27
  • Supported by:
    Project of National Clinical Research Base of Traditional Chinese Medicine (Science and Technology Letter of Chinese Medicine Office [2018]18);Project of Scientific Research Plan of Hebei Administration of Traditional Chinese Medicine in 2020(KTY2020104)

摘要:

在肿瘤诊断领域,人工智能辅助诊断系统可对肿瘤属性、恶性肿瘤分期进行准确地判别,从而延长患者的生存时间。文中以乳腺肿瘤为例,针对特征提取过程中数据量过大所导致的过拟合问题,提出了一种基于监督学习的人工智能辅助诊断模型。在提取特征时,通过引入层次聚类分析来完成有效的特征降维,并将分类后的特征数据作为人工神经网络模型的特征输入,以此实现分类器的有效训练。实验结果显示,所提算法的准确率和AUC值相比对照算法有所提升,表明该模型不仅能解决海量特征区域描述造成的过拟合问题,还增强了人工智能辅助诊断系统的泛化能力,可以完成对钼靶乳腺肿瘤的高精度区分。

关键词: 机器学习, 恶性肿瘤, 辅助诊断, 特征选择, 特征降维, 分类器, 层次聚类, 神经网络

Abstract:

In the field of tumor diagnosis, the artificial intelligence-assisted diagnosis system can accurately distinguish and diagnose tumor attributes and malignant tumor stages, thereby prolonging the survival time of patients. In this study, taking breast tumor as a case, in view of the over-fitting problem caused by the excessive amount of data in the feature extraction process, a supervised learning artificial intelligence-assisted diagnosis model is proposed. When extracting features, hierarchical clustering analysis is introduced to perform effective feature reduction, and the classified feature data is used as the feature input of the artificial neural network model to achieve effective training of the classifier. The experimental results show that compared with other algorithm, the accuracy and AUC value of the proposed algorithm are improved, indicating that the model can not only solve the over-fitting problem caused by the description of massive feature regions, but also enhance the artificial intelligence-assisted diagnosis, thereby completing the mammography target breast tumor high-precision distinction.

Key words: machine learning, malignant tumor, auxiliary diagnosis, feature selection, feature dimension reduction, classifier, hierarchical clustering, neural network

中图分类号: 

  • TP391