[1] |
Lewis F L, Ge S S. Autonomous mobile robots:Sensing,control,decision making and application[M]. Boca Raton: CRC Press, 2018:1-2.
|
[2] |
章逸丰. 快速飞行物体的状态估计和轨迹预测[D]. 杭州: 浙江大学, 2015:1-7.
|
|
Zhang Yifeng. State estimation and trajectory prediction of fast flying object[D]. Hangzhou: Zhejiang University, 2015:1-7.
|
[3] |
Liu C F. On a modified method of measuring the rotational speed of a table tennis ball[C]. Taipei: Proceedings of SICE Annual Conference, 2010:1567-1572.
|
[4] |
季云峰, 陆爱发, 任杰, 等. 基于乒乓球机器人视觉系统的单色乒乓球旋转三维速度测定[J]. 上海体育学院学报, 2017, 41(3):83-88.
|
|
Ji Yunfeng, Lu Aifa, Ren Jie, et al. 3D velocity measurement of single-color table tennis rotation based on visual system of table tennis robot[J]. Journal of Shanghai University of Sport, 2017, 41(3):83-88.
|
[5] |
季云峰, 施之皓, 任杰, 等. 基于单目视觉伺服系统的高速旋转球体三维速度测定[J]. 中国体育科技, 2017, 53(2):139-145.
|
|
Ji Yunfeng, Shi Zhihao, Ren Jie, et al. 3D velocity meas-urement of high-speed rotating sphere based on the monocular vision servo system[J]. China Sport Scienceand Technology, 2017, 53(2):139-145.
|
[6] |
Nonomura J, Nakashima A, Hayakawa Y. Analysis of effects of rebounds and aerodynamics for trajectory of table tennis ball[C]. Taipei: Proceedings of SICE Annual Conference, 2010:1567-1572.
|
[7] |
Tamaki T, Wang H, Raytchev B, et al. Estimating the spin of a table tennis ball using inverse compositional image alignment[C]. Kyoto: IEEE International Conference on Acoustics,Speech and Signal Processing, 2012:1457-1460.
|
[8] |
张传伟, 王京梅, 林晓明, 等. 基于背景差分的一种运动目标检测方法[J]. 电子科技, 2015, 28(10):69-71.
|
|
Zhang Chuanwei, Wang Jingmei, Lin Xiaoming, et al. A moving objects detection method based on background subtraction[J]. Electronic Science and Technology, 2015, 28(10):69-71.
|
[9] |
官洪运, 苏振涛, 汪晨. 基于特征融合的背景差分改进算法[J]. 电子科技, 2020, 33(12):22-27.
|
|
Guan Hongyun, Su Zhentao, Wang Chen. Improved bac-kground subtraction based on feature fusion[J]. Electronic Science and Technology, 2020, 33(12):22-27.
|
[10] |
Chen X, Huang Q, Zhang W, et al. Ping-pong trajectory perception and prediction by a PC based high speed four-camera vision system[C]. Taipei: The Ninth World Congress on Intelligent Control and Automation, 2011:1087-1092.
|
[11] |
Su H, Fang Z, Xu D, et al. Trajectory prediction of spin-ning ball based on fuzzy filtering and local modeling for robotic ping-pong player[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(11):2890-2900.
doi: 10.1109/TIM.2013.2263672
|
[12] |
Huang Y, Xu D, Tan M, et al. Trajectory prediction of s-pinning ball for ping-pong player robot[C]. San Franc-isco: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011:3434-3439.
|
[13] |
Zhao Y, Zhang Y, Xiong R, et al. Optimal state estimation of spinning ping-pong ball using continuous motion model[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(8):2208-2216.
doi: 10.1109/TIM.2014.2386951
|
[14] |
季云峰. 基于遗传算法的乒乓球轨迹反向推导旋转方法研究[J]. 南京体育学院学报, 2021, 20(2):53-60.
|
|
Ji Yunfeng. Reverse calculation of rotation using trajectory of table tennis based on genetic algorithm[J]. Journal of Nanjing Sports Institute, 2021, 20(2):53-60.
|
[15] |
李伟健. 基于深度学习的乒乓球目标检测与旋转球轨迹预测[D]. 上海: 东华大学, 2021:22-48.
|
|
Li Weijian. Table tennis target detection and rotating ball trajectory prediction based on deep learning[D]. Shanghai: Donghua University, 2021:22-48.
|
[16] |
Zhang Z, Xu D, Tan M. Visual measurement and prediction of ball trajectory for table tennis robot[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(12):3195-3205.
doi: 10.1109/TIM.2010.2047128
|
[17] |
Zhang Y, Wei W, Yu D, et al. A tracking and predicting scheme for ping pong robot[J]. Journal of Zhejiang University, 2011, 12(2):110-115.
|
[18] |
Mülling K, Kober J, Peters J. A biomimetic approach torobot table tennis[J]. Adaptive Behavior, 2011, 19(5):359-376.
doi: 10.1177/1059712311419378
|
[19] |
胡啸川, 李泽森, 杨双, 等. 三目组合视觉系统在乒乓球机器人上的研究与实现[J]. 机器人技术与应用, 2020, 26(5):39-43.
|
|
Hu Xiaochuan, Li Zesen, Yang Shuang, et al. Research and implementation of trinocular combined vision system on table tennis robot[J]. Robot Technique and Application, 2020, 26(5):39-43.
|
[20] |
季云峰, 任杰, 施之皓. 乒乓球机器人视觉系统的实时跟踪[J]. 上海体育学院学报, 2020, 44(6):70-75.
|
|
Ji Yunfeng, Ren Jie, Shi Zhihao. Real-time tracking of table tennis robot’s vision system[J]. Journal of Shanghai University of Sport, 2020, 44(6):70-75.
|
[21] |
张远辉. 基于实时视觉的乒乓球机器人标定和轨迹跟踪技术研究[D]. 杭州: 浙江大学, 2009:81-112.
|
|
Zhang Yuanhui. Study on real-time vision based calib-ration and trajectory tracking technology of ping pong robot[D]. Hangzhou: Zhejiang University, 2009:81-112.
|
[22] |
Zhang Z, Xu D, Yang P. Rebound model of table tennisball for trajectory prediction[C]. Tianjin:IEEE International Conference on Robotics and Biomimetics, 2010:376-380.
|
[23] |
Nakashima A, Kobayashi Y, Ogawa Y, et al. Modeling of rebound phenomenon between ball and racket rubber with spinning effect[C]. Fukuoka:ICCAS-SICE, 2009:2295-2300.
|
[24] |
Chen X, Tian Y, Huang Q, et al. Dynamic model based ball trajectory prediction for a robot ping-pong player[C]. Tianjin:IEEE International Conference on Roboticsand Biomimetics, 2010:603-608.
|
[25] |
任艳青, 徐德, 谭民. 旋转球与乒乓球台/球拍的反弹模型[J]. 控制理论与应用, 2012, 29(11):1433-1439.
|
|
Ren Yanqing, Xu De, Tan Min. Rebound model between spinning table tennis ball and table/racket[J]. Control Theory & Application, 2012, 29(11):1433-1439.
|
[26] |
赵永生. 旋转飞行乒乓球的状态估计和轨迹预测[D]. 杭州: 浙江大学, 2017:29-56.
|
|
Zhao Yongsheng. State estimation and trajectory prediction of spinning-flying ping-pong ball[D]. Hangzhou: Zhejiang University, 2017:29-56.
|
[27] |
曾鉴彬. 七自由度乒乓球机器人系统的研究与设计[D]. 上海: 东华大学, 2020:15-29.
|
|
Zeng Jianbin. Research and design of table tennis robot system with seven degrees of freedom[D]. Shanghai: Donghua University, 2020:15-29.
|
[28] |
Zhao Y, Xiong R, Zhang Y. Model based motion state estimation and trajectory prediction of spinning ball for ping-pong robots using expectation-maximization algorithm[J]. Journal of Intelligent & Robotic Systems, 2017, 87(3):407-423.
|
[29] |
Lin H I, Huang Y C. Ball trajectory tracking and prediction for a ping-pong robot[C]. Hulun Buir: The Ninth International Conference on Information Science and Technology, 2019:222-227.
|
[30] |
Qiao F F. Application of deep learning in automatic detection of technical and tactical indicators of table tennis[J]. Plos One, 2021, 16(3):5259-5266.
|
[31] |
Gao Y P, Tebbe J, Krismer J, et al. Markerless racket pose detection and stroke classification based on stereo vision for table tennis robots[C]. Naples: The Third IEEE International Conference on Robotic Computing, 2019:189-196.
|
[32] |
谈小峰. 人体检测和姿态识别在乒乓球机器人上的应用研究[D]. 上海: 东华大学, 2021:17-72.
|
|
Tan Xiaofeng. Research on application of human body detection and pose recognition in table tennis robot system[D]. Shanghai: Donghua University, 2021:17-72.
|
[33] |
Huang Y L, Schölkopf B, Peters J. Learning optimal striking points for a ping-pong playing robot[C]. Hamburg: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2015:4587-4592.
|
[34] |
Huang Y L, Büchler D, Koc O, et al. Jointly learning trajectory generation and hitting point prediction in robot table tennis[C]. Cancun: IEEE-RAS the Sixteenth International Conference on Humanoid Robots, 2016:650-655.
|
[35] |
Ji Y F, Hu X Y, Chen Y T, et al. Model-based trajectoryprediction and hitting velocity control for a new table tennis robot[C]. Prague: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2021:2728-2734.
|
[36] |
Liu C F, Hayakawa Y, Nakashima A. Racket control for robot playing table tennis ball[C]. Jeju Island: The Twelfth In-ternational Conference on Control,Automation and Systems, 2012:1427-1432.
|
[37] |
Nakashima A, Nonomura J, Liu C F, et al. Hitting back- spin balls by robotic table tennis system based on physical models of ball motion[J]. IFAC Proceedings Volumes, 2012, 45(22):834-841.
|
[38] |
Huang Q L, Wu J, Xiong R. A solution of inverse kinematics for 7-dof manipulaators and its application[C]. Beijing: The Tenth World Congress on IEEE, 2012:3711-3717.
|
[39] |
孙立书, 张翰康. 乒乓球机器人最优击球规划[J]. 江苏科技大学学报(自然科学版), 2019, 33(5):73-82
|
|
Sun Lishu, Zhang Hankang. Table tennis robot optimal stroke planning[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2019, 33(5):73-82
|
[40] |
Zhu Y F, Zhao Y S, Jin L S, et al. Towards high level skill learning: Learn to return table tennis ball using monte-carlo based policy gradient method[C]. Kandima: IEEE International Conference on Real-time Computing and Robotics, 2018:34-41.
|
[41] |
Mahjourian R, Miikkulainen R, Lazic N, et al. Hierarchical policy design for sample-efficient learning of robot table tennis through self-play[EB/OL].(2022-01-29) [2022-10-16] https://arxiv.org/abs/1811.12927.
|
[42] |
Tebbe J, Krauch L, Gao Y P, et al. Sample-efficient reinforcement learning in robotic table tennis[C]. Xi'an: IEEE International Conference on Robotics and Automation, 2021:4171-4178.
|
[43] |
金礼森. 基于学习的乒乓球机器人回球决策[D]. 杭州: 浙江大学, 2019:15-31.
|
|
Jin Lisen. Learning to return table tennis ball for robots[D]. Hangzhou: Zhejiang University, 2019:15-31.
|
[44] |
Luo Y, Zhang H B, Zhu X Y, et al. Ball motion control in the table tennis robot system using time-series deep reinforcement learning[J]. IEEE Access, 2021(9):99816-99827.
|