[1] |
温艳兰, 陈友鹏, 王克强, 等. 基于机器视觉的病虫害检测综述[J]. 中国粮油学报, 2022, 37(10):271-279.
|
|
Wen Yanlan, Chen Youpeng, Wang Keqiang, et al. An overview of plant diseases and insect pests detection based on machine vision[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(10):271-279.
|
[2] |
徐天成, 吴敏, 贺冬仙, 等. 机器视觉在农业工程中的应用[J]. 农业工程, 2021, 11(8):40-48.
|
|
Xu Tiancheng, Wu Min, He Dongxian, et al. Application of machine vision in agricultural engineering[J]. Agricultural Engineering, 2021, 11(8):40-48.
|
[3] |
Loti N N A, Noor M R M, Chang S W. Integrated analysis of machine learning and deep learning in chilipest and disease identification[J]. Journal of the Science of Food and Agriculture, 2021, 101(9):3582-3594.
|
[4] |
邵杭, 王永雄. 基于并行对抗与多条件融合的生成式高分辨率图像修复[J]. 模式识别与人工智能, 2020, 33(4):363-374.
doi: 10.16451/j.cnki.issn1003-6059.202004009
|
|
Shao Hang, Wang Yongxiong. Generative high-resolution image inpainting with parallel adversarial network and multicondition fusion[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(4):363-374.
|
[5] |
邵杭, 王永雄, 秦宇龙. 基于深度学习与显著性的数字图像构图优化[J]. 电子科技, 2021, 34(3):36-42.
|
|
Shao Hang, Wang Yongxiong, Qin Yulong. Digital image composition optimization based on salient feature algorithm[J]. Electronic Science and Technology, 2021, 34(3):36-42.
|
[6] |
赵轩, 周凡, 余汉成. 基于改进特征提取及融合模块的YOLO-v3模型[J]. 电子科技, 2022, 35(7):40-45.
|
|
Zhao Xuan, Zhou Fan, Yu Hancheng. Improved YOLO-v3 model based on new feature extraction and fusion module[J]. Electronic Science and Technology, 2022, 35(7):363-374.
|
[7] |
Sinha A, Shekhawat R S. Review of image processing approaches for detecting plant diseases[J]. IET Image Processing, 2020, 14(8):1427-1439.
|
[8] |
Liu J, Wang X. Plant diseases and pests detection based on deep learning:A review[J]. Plant Methods, 2021, 17(22):1-18.
|
[9] |
于润润, 姜晓燕, 朱凯赢, 等. 基于上下文注意力机制的实时语义分割[J]. 电子科技, 2022, 35(12):57-63.
|
|
Yu Runrun, Jiang Xiaoyan, Zhu Kaiying, et al. Real-time image semantic segmentation based on contextual attention mechanism[J]. Electronic Science and Technology, 2022, 35(12):57-63.
|
[10] |
Lee S H, Chan C S, Mayo S J, et al. How deep learning extracts and learns leaf features for plant classification[J]. Pattern Recognition, 2017, 71(11):1-13.
|
[11] |
Zheng Y Y, Kong J L, Jin X B, et al. Cropdeep:The crop vision dataset for deep-learning-based classification and detection in precision agriculture[J]. Sensors, 2019, 19(5):1058-1078.
|
[12] |
Fuentes A, Yoon S, Park D S. Deep learning-based techniques for plant diseases recognition in real-field scenarios[C]. Auckland: International Conference on Advanced Concepts for Intelligent Vision Systems,2020:3-14.
|
[13] |
He K, Chen X, Xie S, et al. Masked autoencoders are scalable vision learners[C]. New Orleans: IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:16000-16009.
|
[14] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]. Long Beach: Neural Information Processing Systems,2017:1-11.
|
[15] |
Dong X, Bao J, Zhang T, et al. Bootstrapped masked autoencoders for vision bert pretraining[C]. Tel Aviv: European Conference on Computer Vision,2022:247-264.
|
[16] |
Xiao J, Bai Y, Yuille A, et al. Delving into masked autoencoders for multilabel thorax disease classification[C]. Waikoloa: IEEE/CVF Winter Conference on Applications of Computer Vision,2023:3588-3600.
|
[17] |
Wang W, Jia Y, Wang Q, et al. An image enhancement algorithm based on fractional-order phase stretch transform and relative total variation[J]. Computational Intelligence and Neuroscience, 2021, 13(1):1-10.
|
[18] |
Thakur P S, Khanna P, Sheorey T, et al. Trends in vision-based machine learning techniques for plant disease identification:A systematic review[J]. Expert Systems with Applications, 2022, 11(1):1-11.
|
[19] |
Fuentes A, Lee J, Lee Y, et al. Anomaly detection of plant diseases and insects using convolutional neural networks[C]. Jeju Island: International Society for Ecological Modelling Global Conference,2017:1-2.
|
[20] |
Hasan M J, Mahbub S, Alom M S, et al. Rice disease identification and classification by integrating support vector machine with deep convolutional neural network[C]. Dhaka: International Conference on Advances in Science,Engineering and Robotics Technology,2019:1-6.
|
[21] |
Thenmozhi K, Reddy U S. Crop pest classification based on deep convolutional neural network and transfer learning[J]. Computers and Electronics in Agriculture, 2019, 164(1):1-11.
|
[22] |
Nagasubramanian K, Jones S, Singh A K, et al. Plant disease identification using explainable 3D deep learning on hyperspectral images[J]. Plant Methods, 2019, 15(1):1-10.
|
[23] |
Fang T, Chen P, Zhang J, et al. Crop leaf disease grade identification based on an improved convolutional neural network[J]. Journal of Electronic Imaging, 2020, 29(1):13-17.
|
[24] |
Wen J, Shi Y, Zhou X, et al. Crop disease classification on inadequate low-resolution target images[J]. Sensors, 2020, 20(16):4601-4017.
|
[25] |
Priyadharshini R A, Arivazhagan S, Arun M, et al. Maize leaf disease classification using deep convolutional neural networks[J]. Neural Computing and Applications, 2019, 31(12):8887-8895.
|
[26] |
Atila U, Ucar M, Akyol K, et al. Plant leaf disease classification using efficientnet deep learning model[J]. Ecological Informatics, 2021, 61(1):1-13.
|
[27] |
Zhou G, Zhang W, Chen A, et al. Rapid detection of rice disease based on FCM-KM and faster R-CNN fusion[J]. IEEE Access, 2019, 7(1):143190-143206.
|
[28] |
Tian Y, Yang G, Wang Z, et al. Detection of apple lesions in orchards based on deep learning methods of cyclegan and YOLOv3-dense[J]. Journal of Sensors, 2019, 1(1):1-13.
|
[29] |
Akshai K P, Anitha J. Plant disease classification using deep learning[C]. Coimbatore: International Conference on Signal Processing and Communication,2021:407-411.
|
[30] |
Amin M F, Othman Z, Ahmad S S S, et al. Analysis onthe impact of imagenet preprocessing image mode using VGG19 pretrained model in plant disease classification[J]. Mechanical Engineering Research Day, 2022, 1(1):154-155.
|
[31] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
|
[32] |
Kumar R, Singh D, Chug A, et al. Evaluation of deep learning based ResNet-50 for plant disease classification with stability analysis[C]. Madurai: International Conference on Intelligent Computing and Control Systems,2022:1280-1287.
|
[33] |
Shao H, Wang Y. Generative image inpainting with salient prior and relative total variation[J]. Journal of Visual Communication and Image Representation, 2021, 79(1):1-9.
|
[34] |
余小东, 杨孟辑, 张海清, 等. 基于迁移学习的农作物病虫害检测方法研究与应用[J]. 农业机械学报, 2020, 51(10):252-258.
|
|
Yu Xiaodong, Yang Mengji, Zhang Haiqing, et al. Research and application of crop diseases detection method based on transfer learning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10):252-258.
|
[35] |
于明, 李若曦, 阎刚, 等. 基于颜色掩膜网络和自注意力机制的叶片病害识别方法[J]. 农业机械学报, 2022, 53(8):337-344.
|
|
Yu Ming, Li Ruoxi, Yan Gang, et al. Crop diseases recognition method via fusion color mask and self-attention mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8):337-344.
|