电子科技 ›› 2023, Vol. 36 ›› Issue (10): 1-8.doi: 10.16180/j.cnki.issn1007-7820.2023.10.001

• •    下一篇

基于YOLO的无约束场景中文车牌检测与识别

陈子昂1,刘娜1,袁野2,李清都3,万里红4   

  1. 1.上海理工大学 健康科学与工程学院,上海 200093
    2.上海交通大学 电子信息与电气工程学院,上海 2000093
    3.上海理工大学 光电信息与计算机工程学院,上海 200093
    4.中原动力智能机器人有限公司,河南 郑州 450018
  • 收稿日期:2022-05-05 出版日期:2023-10-15 发布日期:2023-10-20
  • 作者简介:陈子昂(1998-),男,硕士研究生。研究方向:计算机视觉。|刘娜(1985-), 女,博士,讲师。研究方向:计算机视觉。|袁野(1991-),男,博士,讲师。研究方向:计算机视觉。
  • 基金资助:
    国家自然科学基金(61773083);上海市浦江人才计划(2019PJD035)

Chinese License Plate Detection and Recognition in Unconstrained Scenarios Based on YOLO

CHEN Ziang1,LIU Na1,YUAN Ye2,LI Qingdu3,WAN Lihong4   

  1. 1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093,China
    2. School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200093,China
    3. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093,China
    4. Origin Dynamics Intelligent Robot Co.,Ltd., Zhengzhou 450018,China
  • Received:2022-05-05 Online:2023-10-15 Published:2023-10-20
  • Supported by:
    National Natural Science Foundation of China(61773083);Pujiang Talent Program of Shanghai(2019PJD035)

摘要:

传统中文车牌识别方法对场景约束有要求,算法实时性差,且无法被部署在边缘设备上。针对上述问题,文中提出一种基于YOLO(You Only Look Once)的无约束场景中文车牌检测与识别方法。该方法分为车牌检测和车牌字符识别两个模块。在车牌检测部分,使用改进的YOLOv5模型,在预测目标候选区域的基础上多预测4组关键点用于车牌矫正,并使用在COCO数据集上训练的预训练模型进行训练,减少了由环境复杂引起的误检问题,具有高实时性。在车牌字符识别部分,改进了CRNN(Convolutional Recurrent Neural Network)模型,减少了算法的参数量和计算量,使其能成功部署于各类边缘设备。实验结果表明所提出的车牌识别方法能在复杂环境中高效检测并识别车牌。文中提出的车牌检测模型在车牌检测数据集上的map值相较Retina-face提升了3.0%,车牌字符识别模型在车牌识别数据集上精确度相比LPR-Net提升了4.2%。

关键词: 车牌检测, 车牌识别, 神经网络, 深度学习, 文字识别, 目标检测, 数据集, 机翼损失

Abstract:

In view of the problems of traditional Chinese license plate recognition methods, such as the requirement of scenes, poor real-time performance, and inability to deploy on edge devices, this study proposes a Chinese license plate detection and recognition method based on YOLO(You Only Look Once) in unconstrained scenes. This method is divided into two modules: license plate detection and license plate character recognition. In the license plate detection part, the improved YOLOv5 model is used to predict four groups of key points for license plate correction based on the prediction of target candidate regions, and the pre-training model trained on the COCO data set is used for training, which reduces the error detection problem caused by the complex environment and has high real-time performance. In the license plate character recognition part, the CRNN(Convolutional Recurrent Neural Network) model is improved, which greatly reduces the parameters and computation of the algorithm, so that it can be successfully deployed in various edge devices. Experimental results show that the proposed method can efficiently detect and recognize license plates in complex environments. The map value of the proposed license plate detection model is 3.0% higher than that of Retina-face in the license plate detection data set. Compared with LPR-Net, the accuracy of license plate character recognition model in license plate recognition data set is improved by 4.2%.

Key words: license plate detection, license plate recognition, neural network, deep learning, character recognition, object detection, data set, wing loss

中图分类号: 

  • TP183