[1] |
张长青, 杨楠. 基于混合神经网络的车牌字符识别技术[J]. 电子科技, 2019, 32(9):51-54.
|
|
Zhang Changqing, Yang Nan. License plate character r-ecognition technology based on hybrid neural network[J]. Electronic Science and Technology, 2019, 32(9):51-54.
|
[2] |
马艳娥, 宋金沙, 张甜. 车牌图像定位识别的研究与应用[J]. 中国新通信, 2019, 21(10):127-128.
|
|
Ma Yan'e, Song Jinsha, Zhang Tian, et al. Research and application of license plate image localization and recognition[J]. China New Telecommunications, 2019, 21(10):127-128.
|
[3] |
王能, 赵红立, 琚生根. 一种改进的Canny边缘检测自适应算法[J]. 四川大学学报(自然科学版), 2014, 51(3):479-482.
|
|
Wang Neng, Zhao Hongli, Ju Shenggen, et al. An improved adaptive Canny edge detection algorithm[J]. Journal of Sichuan University(Natural Scinece Edition), 2014, 51(3):479-482.
|
[4] |
谭司庭, 胡志坤. 基于HSV色空间的车牌定位综合方法[J]. 计算机与应用化学, 2011, 28(7):903-906.
|
|
Tan Siting, Hu Zhikun. An effective integration method for license plate location based on HSV color space[J]. Computers and Applied Chemistry, 2011, 28(7):903-906.
|
[5] |
朱晓红, 张永来, 刘冬林. 非正交 haar 小波变换的车牌定位技术研究[J]. 计算机工程与应用, 2009, 45(13):175-175.
doi: 10.3778/j.issn.1002-8331.2009.13.051
|
|
Zhu Xiaohong, Zhang Yonglai, Liu Donglin, et al. License plate location technology based on non-orthogonal haar wavelet transformation[J]. Computer Engineering and Applications, 2009, 45(13):175-175
doi: 10.3778/j.issn.1002-8331.2009.13.051
|
[6] |
陈墨林. 基于卷积神经网络的免字符分割车牌识别算法[J]. 智能计算机与应用, 2021, 11(11):125-127,130.
|
|
Chen Molin. License plate recognition algorithm without character segmentation based on convolutional neural network[J]. Intelligent Computer and Applications, 2021, 11(11) :125-127,130.
|
[7] |
林哲聪. 基于卷积神经网络的车牌识别系统设计和算法实现[D]. 杭州: 浙江工业大学, 2018:2-4.
|
|
Lin Zhecong. Design and algorithm implementation of license plate recognition system based on convolutional neural network[D]. Hangzhou: Zhejiang University of Technology, 2018:2-4.
|
[8] |
Xu Z, Yang W, Meng A, et al. Towards end-to-end lice-nse plate detection and recognition:A large dataset and baseline[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:255-271.
|
[9] |
Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:779-788.
|
[10] |
Redmon J, Farhadi A. YOLO9000:Better,faster,stronger[C]. Holunono: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:7263-7271.
|
[11] |
Zhao Z Q, Zheng P, Xu S, et al. Object detection with deep learning:A review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11):3212-3232.
doi: 10.1109/TNNLS.5962385
|
[12] |
Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]. Holunono: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:2117-2125.
|
[13] |
Xiao Y, Tian Z, Yu J, et al. A review of object detection based on deep learning[J]. Multimedia Tools and Applications, 2020, 79(33):23729-23791.
doi: 10.1007/s11042-020-08976-6
|
[14] |
赵崇, 迟蒙蒙, 储聪. 导盲犬行走机构运动仿真及其视觉识别算法研究[J]. 电子科技, 2021, 34(9):66-72.
|
|
Zhao Chong, Chi Mengmeng, Chu Cong, et al. Research on motion simulation and visual recognition algorithm of guide dog walking mechanism[J]. Electronic Scienceand Technology, 2021, 34(9):66-72.
|
[15] |
Feng Z H, Kittler J, Awais M, et al. Wing loss for robust facial landmark localisation with convolutional neural networks[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:2235-2245.
|
[16] |
Shi B, Bai X, Yao C. An end-to-end trainable neural n-etwork for image-based sequence recognition and its application to scene text recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(11):2298-2304.
doi: 10.1109/TPAMI.2016.2646371
|
[17] |
Pak M, Kim S. A review of deep learning in image recognition[C]. Bali Island: The Fourth International Conference on Computer Applications and Information Processing Technology, 2017:1-3.
|
[18] |
Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]. Seoul: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:1314-1324.
|
[19] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:7132-7141.
|
[20] |
Zhang S, Zheng D, Hu X, et al. Bidirectional long short-term memory networks for relation classification[C]. Shanghai: Proceedings of the Twenty-ninth Pacific Asia Conference on Language,Information and Computation, 2015:73-78.
|
[21] |
Graves A, Fernández S, Gomez F, et al. Connectionist temporal classification:Labelling unsegmented sequence data with recurrent neural networks[C]. Pittsburgh: Proceedings of the Twenty-third International Conferenceon Machine Learning, 2006:369-376.
|
[22] |
Deng J, Guo J, Ververas E, et al. Retinaface:Single-shot multi-level face localisation in the wild[C]. Seattle: Pr-oceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:5203-5212.
|
[23] |
Bian L, Wang H, Zhu C, et al. Image-free multi-character recognition[J]. Optics Letters, 2022, 47(6):1343-1346.
doi: 10.1364/OL.451777
pmid: 35290309
|