Electronic Science and Technology ›› 2024, Vol. 37 ›› Issue (10): 23-29.doi: 10.16180/j.cnki.issn1007-7820.2024.10.004
Previous Articles Next Articles
JU Ping1, SONG Yan1, ZHANG Yingjie2, XU Yifu3, SHAO Hang4
Received:
2023-03-03
Online:
2024-10-15
Published:
2024-11-04
Supported by:
CLC Number:
JU Ping, SONG Yan, ZHANG Yingjie, XU Yifu, SHAO Hang. Research on Agricultural Crop Diseases and Pests Classification Based on Masked Autoencoding[J].Electronic Science and Technology, 2024, 37(10): 23-29.
Table 1.
Category distribution of data set samples of agricultural crop diseases and pests"
作物 | 病虫害类别 | 训练样本 | 验证样本 |
---|---|---|---|
草莓 | 健康 | 242 | 35 |
叶枯病 | 775 | 110 | |
番茄 | 健康 | 1 208 | 173 |
白粉病、疮痂病、早疫病、 晚疫病、叶霉病、斑点病、 斑枯病、红蜘蛛损伤、 黄化曲叶病毒病、花叶病毒病 | 10 268 | 1 466 | |
柑桔 | 健康 | 367 | 52 |
黄龙病 | 3 627 | 531 | |
辣椒 | 健康 | 1 025 | 147 |
疮痂病 | 664 | 94 | |
马铃薯 | 健康 | 1 430 | 204 |
早疫病、晚疫病 | 1 410 | 202 | |
苹果 | 健康 | 1 185 | 169 |
黑星病、灰斑病、雪松锈病 | 972 | 139 | |
葡萄 | 健康 | 294 | 42 |
黑腐病、轮斑病、褐斑病 | 2 456 | 352 | |
桃子 | 健康 | 251 | 36 |
疮痂病 | 1 627 | 232 | |
樱桃 | 健康 | 598 | 85 |
白粉病 | 226 | 30 | |
玉米 | 健康 | 376 | 54 |
灰斑病、锈病、 叶斑病、花叶病毒病 | 2 717 | 387 |
[1] | 温艳兰, 陈友鹏, 王克强, 等. 基于机器视觉的病虫害检测综述[J]. 中国粮油学报, 2022, 37(10):271-279. |
Wen Yanlan, Chen Youpeng, Wang Keqiang, et al. An overview of plant diseases and insect pests detection based on machine vision[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(10):271-279. | |
[2] | 徐天成, 吴敏, 贺冬仙, 等. 机器视觉在农业工程中的应用[J]. 农业工程, 2021, 11(8):40-48. |
Xu Tiancheng, Wu Min, He Dongxian, et al. Application of machine vision in agricultural engineering[J]. Agricultural Engineering, 2021, 11(8):40-48. | |
[3] | Loti N N A, Noor M R M, Chang S W. Integrated analysis of machine learning and deep learning in chilipest and disease identification[J]. Journal of the Science of Food and Agriculture, 2021, 101(9):3582-3594. |
[4] |
邵杭, 王永雄. 基于并行对抗与多条件融合的生成式高分辨率图像修复[J]. 模式识别与人工智能, 2020, 33(4):363-374.
doi: 10.16451/j.cnki.issn1003-6059.202004009 |
Shao Hang, Wang Yongxiong. Generative high-resolution image inpainting with parallel adversarial network and multicondition fusion[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(4):363-374. | |
[5] | 邵杭, 王永雄, 秦宇龙. 基于深度学习与显著性的数字图像构图优化[J]. 电子科技, 2021, 34(3):36-42. |
Shao Hang, Wang Yongxiong, Qin Yulong. Digital image composition optimization based on salient feature algorithm[J]. Electronic Science and Technology, 2021, 34(3):36-42. | |
[6] | 赵轩, 周凡, 余汉成. 基于改进特征提取及融合模块的YOLO-v3模型[J]. 电子科技, 2022, 35(7):40-45. |
Zhao Xuan, Zhou Fan, Yu Hancheng. Improved YOLO-v3 model based on new feature extraction and fusion module[J]. Electronic Science and Technology, 2022, 35(7):363-374. | |
[7] | Sinha A, Shekhawat R S. Review of image processing approaches for detecting plant diseases[J]. IET Image Processing, 2020, 14(8):1427-1439. |
[8] | Liu J, Wang X. Plant diseases and pests detection based on deep learning:A review[J]. Plant Methods, 2021, 17(22):1-18. |
[9] | 于润润, 姜晓燕, 朱凯赢, 等. 基于上下文注意力机制的实时语义分割[J]. 电子科技, 2022, 35(12):57-63. |
Yu Runrun, Jiang Xiaoyan, Zhu Kaiying, et al. Real-time image semantic segmentation based on contextual attention mechanism[J]. Electronic Science and Technology, 2022, 35(12):57-63. | |
[10] | Lee S H, Chan C S, Mayo S J, et al. How deep learning extracts and learns leaf features for plant classification[J]. Pattern Recognition, 2017, 71(11):1-13. |
[11] | Zheng Y Y, Kong J L, Jin X B, et al. Cropdeep:The crop vision dataset for deep-learning-based classification and detection in precision agriculture[J]. Sensors, 2019, 19(5):1058-1078. |
[12] | Fuentes A, Yoon S, Park D S. Deep learning-based techniques for plant diseases recognition in real-field scenarios[C]. Auckland: International Conference on Advanced Concepts for Intelligent Vision Systems,2020:3-14. |
[13] | He K, Chen X, Xie S, et al. Masked autoencoders are scalable vision learners[C]. New Orleans: IEEE/CVF Conference on Computer Vision and Pattern Recognition,2022:16000-16009. |
[14] | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]. Long Beach: Neural Information Processing Systems,2017:1-11. |
[15] | Dong X, Bao J, Zhang T, et al. Bootstrapped masked autoencoders for vision bert pretraining[C]. Tel Aviv: European Conference on Computer Vision,2022:247-264. |
[16] | Xiao J, Bai Y, Yuille A, et al. Delving into masked autoencoders for multilabel thorax disease classification[C]. Waikoloa: IEEE/CVF Winter Conference on Applications of Computer Vision,2023:3588-3600. |
[17] | Wang W, Jia Y, Wang Q, et al. An image enhancement algorithm based on fractional-order phase stretch transform and relative total variation[J]. Computational Intelligence and Neuroscience, 2021, 13(1):1-10. |
[18] | Thakur P S, Khanna P, Sheorey T, et al. Trends in vision-based machine learning techniques for plant disease identification:A systematic review[J]. Expert Systems with Applications, 2022, 11(1):1-11. |
[19] | Fuentes A, Lee J, Lee Y, et al. Anomaly detection of plant diseases and insects using convolutional neural networks[C]. Jeju Island: International Society for Ecological Modelling Global Conference,2017:1-2. |
[20] | Hasan M J, Mahbub S, Alom M S, et al. Rice disease identification and classification by integrating support vector machine with deep convolutional neural network[C]. Dhaka: International Conference on Advances in Science,Engineering and Robotics Technology,2019:1-6. |
[21] | Thenmozhi K, Reddy U S. Crop pest classification based on deep convolutional neural network and transfer learning[J]. Computers and Electronics in Agriculture, 2019, 164(1):1-11. |
[22] | Nagasubramanian K, Jones S, Singh A K, et al. Plant disease identification using explainable 3D deep learning on hyperspectral images[J]. Plant Methods, 2019, 15(1):1-10. |
[23] | Fang T, Chen P, Zhang J, et al. Crop leaf disease grade identification based on an improved convolutional neural network[J]. Journal of Electronic Imaging, 2020, 29(1):13-17. |
[24] | Wen J, Shi Y, Zhou X, et al. Crop disease classification on inadequate low-resolution target images[J]. Sensors, 2020, 20(16):4601-4017. |
[25] | Priyadharshini R A, Arivazhagan S, Arun M, et al. Maize leaf disease classification using deep convolutional neural networks[J]. Neural Computing and Applications, 2019, 31(12):8887-8895. |
[26] | Atila U, Ucar M, Akyol K, et al. Plant leaf disease classification using efficientnet deep learning model[J]. Ecological Informatics, 2021, 61(1):1-13. |
[27] | Zhou G, Zhang W, Chen A, et al. Rapid detection of rice disease based on FCM-KM and faster R-CNN fusion[J]. IEEE Access, 2019, 7(1):143190-143206. |
[28] | Tian Y, Yang G, Wang Z, et al. Detection of apple lesions in orchards based on deep learning methods of cyclegan and YOLOv3-dense[J]. Journal of Sensors, 2019, 1(1):1-13. |
[29] | Akshai K P, Anitha J. Plant disease classification using deep learning[C]. Coimbatore: International Conference on Signal Processing and Communication,2021:407-411. |
[30] | Amin M F, Othman Z, Ahmad S S S, et al. Analysis onthe impact of imagenet preprocessing image mode using VGG19 pretrained model in plant disease classification[J]. Mechanical Engineering Research Day, 2022, 1(1):154-155. |
[31] | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778. |
[32] | Kumar R, Singh D, Chug A, et al. Evaluation of deep learning based ResNet-50 for plant disease classification with stability analysis[C]. Madurai: International Conference on Intelligent Computing and Control Systems,2022:1280-1287. |
[33] | Shao H, Wang Y. Generative image inpainting with salient prior and relative total variation[J]. Journal of Visual Communication and Image Representation, 2021, 79(1):1-9. |
[34] | 余小东, 杨孟辑, 张海清, 等. 基于迁移学习的农作物病虫害检测方法研究与应用[J]. 农业机械学报, 2020, 51(10):252-258. |
Yu Xiaodong, Yang Mengji, Zhang Haiqing, et al. Research and application of crop diseases detection method based on transfer learning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10):252-258. | |
[35] | 于明, 李若曦, 阎刚, 等. 基于颜色掩膜网络和自注意力机制的叶片病害识别方法[J]. 农业机械学报, 2022, 53(8):337-344. |
Yu Ming, Li Ruoxi, Yan Gang, et al. Crop diseases recognition method via fusion color mask and self-attention mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8):337-344. |
[1] | HE Zhiqiang, SUN Zhanquan. Swin-Transformer-Based Carotid Ultrasound Image Plaque Segmentation [J]. Electronic Science and Technology, 2024, 37(9): 48-56. |
[2] | YANG Xiao, LI Gaolei. Persistent Clean-Label Backdoor Attack for Semi-Supervised Graph Node Classification [J]. Electronic Science and Technology, 2024, 37(9): 57-63. |
[3] | LU Zhenyang. Overview of Research on Network Security Situation Prediction Technology [J]. Electronic Science and Technology, 2024, 37(8): 92-96. |
[4] | HAN Yinghao, LI Feifei. Scene Recognition Algorithm Based on Discriminative Patch Extraction and Two-Stage Classification [J]. Electronic Science and Technology, 2024, 37(7): 25-32. |
[5] | HE Xing, HUANG Yongming, ZHU Yong. Pavement Pothole Detection Method Based on Improved YOLOv5 [J]. Electronic Science and Technology, 2024, 37(7): 53-59. |
[6] | ZHAO Xu, HU Demin. Multi-Path Parallel Multi-Scale Feature Reuse for Remote Sensing Image Super-Resolution [J]. Electronic Science and Technology, 2024, 37(6): 61-68. |
[7] | YE Yuxin, JU Zhiyong, LAI Ying. Traffic Sign Detection Algorithm Incorporating Receptive Field Enhancement Module and Attention Mechanism [J]. Electronic Science and Technology, 2024, 37(6): 8-16. |
[8] | YUAN Ao, QI Jinpeng, JIA Can, XUE Yuxin, GUO Yangyang. A Classification Method of Time Series Pathological Data Segments Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(6): 84-91. |
[9] | ZHU Zihao, SONG Yan. Lightweight Capsule Network Fusing Attention and Capsule Pooling [J]. Electronic Science and Technology, 2024, 37(5): 1-8. |
[10] | XIA Rongcheng, LIU Deer. Vehicle Detection and Analysis in Urban Waterlogging Area Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(5): 18-24. |
[11] | ZHU Jinkai, FANG Lanting, JI Xiaowen, HUANG Jie. Multimodal Android Malware Detection Method Based on Behavioral and Semantic Characteristics [J]. Electronic Science and Technology, 2024, 37(5): 71-78. |
[12] | PANG Jiangfei, SUN Zhanquan. Multi-Encoder Transformer for End-to-End Speech Recognition [J]. Electronic Science and Technology, 2024, 37(4): 1-7. |
[13] | GAO Dian, ZHANG Jing. Short-Term Load Forecasting Based on CEEMD-ITSA-BiLSTM Combined Model [J]. Electronic Science and Technology, 2024, 37(4): 30-37. |
[14] | LIN Binbin, XU Zhen, YUAN Quan, TIAN Zhixin. Multi-Parameter Prediction of Dissolved Oxygen in Eel Ponds Based on ISSA-LSTM [J]. Electronic Science and Technology, 2024, 37(4): 87-96. |
[15] | MA Wenjie, ZHANG Xuanxiong. Research on Blind Roads and Obstacle Recognition Algorithm Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(3): 75-83. |
|