Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (6): 64-71.doi: 10.16180/j.cnki.issn1007-7820.2023.06.010
Previous Articles Next Articles
LI Keran,CHEN Sheng,KE Panpan
Received:
2021-12-21
Online:
2023-06-15
Published:
2023-06-20
Supported by:
CLC Number:
LI Keran,CHEN Sheng,KE Panpan. A Method of Facial Mask Segmentation Based on CA-Net[J].Electronic Science and Technology, 2023, 36(6): 64-71.
Table 4.
Influence of training parameters on Dice index of segmentation results /%"
Epochs | Batch Size | |||
---|---|---|---|---|
2 | 4 | 8 | 16 | |
100 | 67.32±2.41 | 65.24±2.93 | 62.24±3.35 | 59.89±3.12 |
150 | 73.18±3.06 | 72.57±3.12 | 71.34±3.10 | 71.53±3.27 |
200 | 78.23±2.71 | 78.12±2.61 | 75.67±2.66 | 72.45±2.36 |
250 | 82.35±2.48 | 82.23±2.32 | 81.49±2.88 | 80.92±3.27 |
300 | 83.83±1.87 | 83.86±2.74 | 83.51±2.66 | 81.23±3.07 |
350 | 83.71±2.03 | 83.79±2.85 | 82.68±2.44 | 81.36±3.12 |
[1] | 党永强. 基于深度学习的口罩疵点检测与分类算法研究[D]. 西安: 西安工程大学, 2018:42-64. |
Dang Yongqiang. The research on defect detection and classification algorithm of masks based on deep learning[D]. Xi'an: Xi'an Polytechnic University, 2018:42-64. | |
[2] | 刘贺鹏, 吕建平. 基于形态学分水岭的Normalized Cut图像分割方法[J]. 电子科技, 2016, 29(9):12-14. |
Liu Hepeng, Lü Jianping. A Normalized Cut image segmentation method based on morphological watersheds[J]. Electronic Science and Technology, 2016, 29(9):12-14. | |
[3] | 邬春学, 刘训洋. 改进粒子群结合K-均值聚类的图像分割算法[J]. 电子科技, 2016, 29(8):93-95. |
Wu Chunxue, Liu Xunyang. A modified PSO combined K-means clustering algorithm for image segmentation[J]. Electronic Science and Technology, 2016, 29(8):93-95. | |
[4] |
Zhou Z W, Siddiquee M M R, Tajbakhsh N, et al. U-Net++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6):1856-1867.
doi: 10.1109/TMI.42 |
[5] | 贝琛圆, 于海滨, 潘勉, 等. 基于改进U-Net网络的腺体细胞图像分割算法[J]. 电子科技, 2019, 32(11):18-22. |
Bei Chenyuan, Yu Haibin, Pan Mian, et al. Gland cell image segmentation algorithm based on improved U-Net network[J]. Electronic Science and Technology, 2019, 32(11):18-22. | |
[6] | 司明明, 陈玮, 胡春燕, 等. 融合Resnet50和U-Net的眼底彩色血管图像分割[J]. 电子科技, 2021, 34(8):19-24. |
Si Mingming, Chen Wei, Hu Chunyan, et al. Fundus blood vessel image segmentation combining Resnet50 and U-Net[J]. Electronic Science and Technology, 2021, 34(8):19-24. | |
[7] |
Gu R, Wang G T, Tao S, et al. CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 40(2):699-711.
doi: 10.1109/TMI.2020.3035253 pmid: 33136540 |
[8] | 王利娟. 低照度彩色图像增强方法研究[D]. 银川: 北方民族大学, 2021:35-68. |
Wang Lijuan. Research on enhancement methods of low-light color image[D]. Yinchuan: North Minzu University, 2021:35-68. | |
[9] | 王春江, 张猛, 张建飞. 基于网络摄像头的活体人脸识别系统设计[J]. 电子科技, 2020, 33(6):63-68. |
Wang Chunjiang, Zhang Meng, Zhang Jianfei. Design of living face recognition system based on web camera[J]. Electronic Science and Technology, 2020, 33(6):63-68. | |
[10] | 胡少聪. 基于深度学习的人脸识别方法研究[J]. 电子科技, 2019, 32(6):82-86. |
Hu Shaocong. Research on face recognition based on deep learning[J]. Electronic Science and Technology, 2019, 32(6):82-86. | |
[11] | 张莹, 刘子龙, 万伟. 基于Faster R-CNN的无人机车辆目标检测[J]. 电子科技, 2021, 34(11):11-20. |
Zhang Ying, Liu Zilong, Wan Wei. UAV vehicle target detection based on Faster R-CNN[J]. Electronic Science and Technology, 2021, 34(11):11-20. | |
[12] | 张震, 李孟洲, 李浩方, 等. 改进的SSD算法及其在目标检测中的应用[J]. 计算机应用与软件, 2021, 38(9):226-231. |
Zhang Zhen, Li Mengzhou, Li Haofang, et al. Improved SSD algorithm and its application in target detection[J]. Computer Applications and Software, 2021, 38(9):226-231. | |
[13] |
Zhang H, Hong X G, Zhu L. Detecting small objects in thermal images using single-shot detector[J]. Automatic Control and Computer Sciences, 2021, 55(2):202-211.
doi: 10.3103/S0146411621020097 |
[14] |
Sun P, Zhao Y, Zhu S. An approach to improve SSD through mask prediction of multi-scale feature maps[J]. Pattern Analysis and Applications, 2021, 24(3):1357-1366.
doi: 10.1007/s10044-021-00993-x |
[15] | 吉鑫, 陈剑云, 完颜幸幸. 用于接触网可视化接地识别的改进VGG-16模型[J]. 传感器与微系统, 2021, 40(2):58-60. |
Ji Xin, Chen Jianyun, Wanyan Xingxing, Improved VGG-16 model for visual OCS earthing recognition[J]. Transducer and Microsystem Technologies, 2021, 40(2):58-60. | |
[16] | Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]. Munich: Proceedings of the Medical Image Computing and Computer-Assisted Intervention, 2015:234-241. |
[17] | Wang X L, Girshick R, Gupta A, et al. Non-local neural net-works[C]. Salt Lake City: Proceedings of the Conference on Computer Vision and Pattern Recognition, 2018:7794-7803. |
[18] | Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: Learning where to look for the pancreas[C]. Amsterdam: Proceedings of the Medical Imaging with Deep Learning, 2018:1-12. |
[19] |
Hu J, Shen L, Sun G, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42(8):2011-2023.
doi: 10.1109/TPAMI.34 |
[20] | Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:3-19. |
[21] | 苏烨, 李筠, 杨海马, 等. 基于Faster R-CNN的钢轨表面缺陷识别研究[J]. 电子科技, 2020, 33(9):63-68. |
Su Ye, Li Jun, Yang Haima, et al. Research on rail surface defect recognition based on Faster R-CNN[J]. Electronic Science and Technology, 2020, 33(9):63-68. | |
[22] | Zabihollahy F, Ukwatta E, White J A. Fully automated segmentation of left ventricular myocardium from 3D late gadolinium enhancement magnetic resonance images using a U-Net convolutional neural network-based model[C]. San Diego: Proceedings of the International Society for Optical Engineering Medical Imaging, 2019:832-839. |
[23] | Zabihollahy F, White J A, Ukwatta E. Myocardial scar segmentation from magnetic resonance images using convolutional neural network[C]. Houston: Proceedings of the Computer-Aided Diagnosis, 2018:1-10. |
[24] |
Sara M, Riccardo B, Chiara M, et al. Development and testing of a deep learning based strategy for scar segmentation on CMR LGE images[J]. Magnetic Resonance Materials in Physics,Biology and Medicine, 2019, 32(2):187-195.
doi: 10.1007/s10334-018-0718-4 |
[25] | 张灿, 陈玮, 尹钟. 基于弱监督宫颈细胞图像的语义分割方法[J]. 电子科技, 2021, 34(12):68-74. |
Zhang Can, Chen Wei, Yin Zhong. Semantic segmentation of cervical cell image based on weak supervision[J]. Electronic Science and Technology, 2021, 34(12):68-74. | |
[26] |
伍济钢, 成远, 邵俊, 等. 面向智能手机玻璃盖板缺陷检测的YOLOv3改进和应用[J]. 液晶与显示, 2021, 36(12):1728-1736.
doi: 10.37188/CJLCD.2021-0172 |
Wu Jigang, Cheng Yuan, Shao Jun, et al. Improvement and application of YOLOv3 for defect detection of smart phone glass covers[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(12):1728-1736.
doi: 10.37188/CJLCD.2021-0172 |
|
[27] | 梁铭峰, 李蠡. 基于对抗神经网络的增强YOLOv3模糊目标检测[J]. 计算机应用与软件, 2021, 38(10):221-228. |
Liang Mingfeng, Li Li. Enhanced YOLOv3 blur target detection based on generative adversarial network[J]. Computer Applications and Software, 2021, 38(10):221-228. | |
[28] | 夏禹, 肖金球, 翁玉尚. 基于改进Faster-RCNN的偏光片表面缺陷检测[J]. 光学技术, 2021, 47(6):695-702. |
Xia Yu, Xiao Jinqiu, Weng Yushang. Surface defect detection of polarizer based on improved Faeter-RCNN[J]. Optical Technique, 2021, 47(6):695-702. |
[1] | SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan. Underwater Occlusion Target Detection Algorithm Based on Attention Mechanism [J]. Electronic Science and Technology, 2023, 36(5): 62-70. |
[2] | LIU Yuwei,CAO Min,FENG Haojia. CNAS Recognition Criteria Automatic Benchmarking System Based on Natural Language Processing [J]. Electronic Science and Technology, 2023, 36(5): 28-33. |
[3] | ZHENG Yuheng,FU Dongxiang. UAV Detection Based on Slim-YOLOv4 with Embedded Device [J]. Electronic Science and Technology, 2023, 36(5): 55-61. |
[4] | CUI Zhuodong,CHEN Wei,YIN Zhong. Helmet Wearing Detection Based on Enhanced Feature Fusion Network [J]. Electronic Science and Technology, 2023, 36(4): 44-51. |
[5] | TANG Zheng,ZHANG Huilin,MA Lixin,LIU Jinzhi,WANG Hao. Identification of Foreign Objects on Transmission Lines Using Lightweight Network Algorithm [J]. Electronic Science and Technology, 2023, 36(4): 71-77. |
[6] | BAI Yingqi,PALIDAN·Tuerxun . A Scientific Literature Recommendation Method Based on Multi-Task Learning [J]. Electronic Science and Technology, 2023, 36(4): 59-64. |
[7] | LUO Ruipeng,FENG Mingke,HUANG Xin,ZOU Renling,LI Dan. A Review of Research on EEG Signal Preprocessing Methods [J]. Electronic Science and Technology, 2023, 36(4): 36-43. |
[8] | LU Dongxiang. Research Progress of Node Assignment Optimization Strategy in Road Traffic Network [J]. Electronic Science and Technology, 2023, 36(3): 81-86. |
[9] | YU Qiongfang,NIU Dongyang. Mixed Prediction of Mine Pressure Time and Space Based on LSTM Network [J]. Electronic Science and Technology, 2023, 36(2): 67-72. |
[10] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[11] | CHENG Changwen,CHEN Wei,CHEN Jinhong,YIN Zhong. YOLO-Improve Detection Method of Real-Time Mask Wearing [J]. Electronic Science and Technology, 2023, 36(2): 73-80. |
[12] | ZHAO Wenjun,ZHAI Han,ZHANG Hongyan. Total Variation and Sparsity Regularized Deep Nonnegative Matrix Factorization for Hyperspectral Unmixing [J]. Electronic Science and Technology, 2023, 36(2): 53-60. |
[13] | ZHANG Manjie,YANG Fangyan,JI Yunfeng. Research Progress of Body Posture Estimation in Ball Games [J]. Electronic Science and Technology, 2023, 36(1): 28-37. |
[14] | WU Tong,YU Lianzhi. The Recommendation Algorithm of Extreme Deep Factorization Machine Merged with Attention Network [J]. Electronic Science and Technology, 2023, 36(1): 38-43. |
[15] | BI Jiazhen,SHEN Tuo,ZHANG Xuanxiong. A Research on Distance Measurement Between Trains in Rail Transit Based on Machine Vision [J]. Electronic Science and Technology, 2022, 35(9): 37-43. |
|