电子科技 ›› 2023, Vol. 36 ›› Issue (12): 79-86.doi: 10.16180/j.cnki.issn1007-7820.2023.12.011

• • 上一篇    下一篇

一种用于变压器故障诊断的卷积神经网络优化方法

汪徐阳,易映萍,李田丰   

  1. 上海理工大学 机械工程学院,上海 200093
  • 收稿日期:2022-06-16 出版日期:2023-12-15 发布日期:2023-12-05
  • 作者简介:汪徐阳(1998-),女,硕士研究生。研究方向:电气设备故障诊断、数据挖掘。|李田丰(1996-),女,讲师。研究方向:电池管理。
  • 基金资助:
    国家重点研发计划(2018YFB0106300)

A Convolutional Neural Network Optimization Method for Fault Diagnosis of Power Transformer

WANG Xuyang,YI Yingping,LI Tianfeng   

  1. School of Mechanical Engineering, University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2022-06-16 Online:2023-12-15 Published:2023-12-05
  • Supported by:
    National Key R&D Program of China(2018YFB0106300)

摘要:

传统故障诊断方法存在编码不完整和编码边界过于绝对等缺点,难以满足电网运维工作的实际需求。利用电力变压器故障时产生的气体对变压器进行故障诊断是目前智能电网状态检测的热门研究领域。但变压器出现各类故障的频率具有较大差别,可能造成故障样本信息不完整、数据量不足,使用传统卷积神经网络模型会出现训练过程收敛速度慢、训练精度低等问题。文中提出一种在保留原始数据特征不变的情况下进行数据增强的方法,将扩充后的一维数据转化为二维图片输入到二维卷积神经网络诊断模型中,并对卷积神经网络模型中的Adam优化算法进行改进。诊断结果表明,所提方法使得网络训练的精度达到了96.20%,相较于传统的一维卷积神经网络故障诊断方法(92.12%)具有更高的收敛速度和泛化能力。

关键词: 电力变压器, DGA, 故障诊断, 机器学习, 数据增强, 二维卷积, 神经网络, Adam

Abstract:

Traditional fault diagnosis methods have disadvantages such as incomplete coding and overly absolute coding boundaries, which are difficult to meet the actual needs of power grid operation and maintenance. Using the gas generated when a power transformer fails to diagnose the transformer fault is currently a popular research area for smart grid condition detection. However, the frequency of various types of faults in transformers varies greatly, which may result in incomplete fault sample information and insufficient data, and the traditional convolutional neural network models have problems such as unstable training process, low training accuracy and long time. Based on the transformer fault diagnosis technology of one dimensional convolutional neural network, this study proposes a new method of data enhancement while keeping the original data features unchanged, transforming expanded one dimensional data into two dimensional pictures to input into the two dimensional convolutional neural network diagnosis model, and improve the Adam optimization algorithm in the convolutional neural network model architecture. Diagnostic results indicate that the accuracy of network training reaches 96.20%. At the same time, it has higher convergence speed and generalization ability than the traditional one dimensional convolutional neural network fault diagnosis method(92.12%).

Key words: power transformer, DGA, fault diagnosis, machine learning, data enhancement, two dimensional, neural network, Adam

中图分类号: 

  • TM41