Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (2): 67-72.doi: 10.16180/j.cnki.issn1007-7820.2023.02.010
Previous Articles Next Articles
YU Qiongfang1,2,NIU Dongyang1
Received:
2021-08-24
Online:
2023-02-15
Published:
2023-01-17
Supported by:
CLC Number:
YU Qiongfang,NIU Dongyang. Mixed Prediction of Mine Pressure Time and Space Based on LSTM Network[J].Electronic Science and Technology, 2023, 36(2): 67-72.
[1] | 程敬义, 万志军, Peng Syd S, 等. 基于海量矿压监测数据的采场支架与顶板状态智能感知技术[J]. 煤炭学报, 2020, 45(6):2090-2103. |
Cheng Jingyi, Wan Zhijun, Peng Syd S, et al. Technology of intelligent sensing longwall shield supports status and roof strata based on massive shield pressure monitoring data[J]. Journal of China Coal Society, 2020, 45(6):2090-2103. | |
[2] | 郭玉峰, 浦仕江, 付巍, 等. 综放仰采工作面覆岩移动规律及支架工作阻力确定[J]. 工矿自动化, 2021, 47(3):89-94. |
Guo Yufeng, Pu Shijiang, Fu Wei, et al. Movement law of overburden in upward fully mechanized working face anddetermination of support working resistance[J]. Industry and Mine Automation, 2021, 47(3):89-94. | |
[3] | 常峰. 基于GA-BP神经网络的工作面顶板矿压预测模型应用研究[D]. 北京: 中国矿业大学, 2019. |
Chang Feng. Application research of the prediction model for the coal working face roof pressure based on GA-BP neural networks[D]. Beijing: China University of Mining and Technology, 2019. | |
[4] | 张守祥, 张学亮, 刘帅, 等. 智能化放顶煤开采的精确放煤控制技术[J]. 煤炭学报, 2020, 45(6):2008-2020. |
Zhang Shouxiang, Zhang Xueliang, Liu Shuai, et al. Intelligent precise control technology of fully mechanized top coal caving face[J]. Journal of China Coal Society, 2020, 45(6):2008-2020. | |
[5] | 程海星, 朱磊, 宋立平, 等. 基于逆向传播神经网络的工作面顶板矿压数据预测[J]. 煤矿安全, 2021, 52(5):216-220. |
Cheng Haixing, Zhu Lei, Song Liping, et al. Roof pressure data prediction for working face based on back propagation neural network[J]. Safety in Coal Mines, 2021, 52(5):216-220. | |
[6] | 王润沛. 基于机器学习的分布式光纤监测覆岩变形矿压预测研究[D]. 西安: 西安科技大学, 2020. |
Wang Runpei. Research on the prediction of underground pressure based on distributed optical fiber monitoring of overburden rock deformation based on machine learning[D]. Xi'an: Xi'an University of Science and Technology, 2020. | |
[7] | 赵仕艳, 谢子殿, 丁康康, 等. 粒子群优化BP-PID的矿井提升机调速系统[J]. 电子科技, 2021, 34(1):43-49. |
Zhao Shiyan, Xie Zidian, Ding Kangkang, et al. Particle swarm optimization BP-PID of rotor variable frequency speed in mine hoisting system[J]. Electronic Science and Technology, 2021, 34(1):43-49. | |
[8] | 苏志毅. 胜利煤矿综采工作面矿山压力监测分析[J]. 煤炭与化工, 2019, 42(7):8-10. |
Su Zhiyi. Monitoring and analysis of mining pressure in fully mechanized face of Shengli Mine[J]. Coal and Chemical Industry, 2019, 42(7):8-10. | |
[9] | 郭晋平. 煤矿综合机械化采煤工艺的发展与应用探析[J]. 冶金与材料, 2019, 39(5):67-68. |
Guo Jinping. Development and application of comprehensive mechanized coal mining technology in coal mines[J]. Metallurgy and Materials, 2019, 39(5):67-68. | |
[10] | 张通, 赵毅鑫, 朱广沛, 等. 神东浅埋工作面矿压显现规律的多因素耦合分析[J]. 煤炭学报, 2016, 41(S2):287-296. |
Zhang Tong, Zhao Yixin, Zhu Guangpei, et al. A multi-coupling analysis of mining-induced pressure characteristics of shallow-depth coal face in Shendong mining area[J]. Journal of China Coal Society, 2016, 41(S2):287-296. | |
[11] | 赵毅鑫, 杨志良, 马斌杰, 等. 基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报, 2020, 45(1):54-65. |
Zhao Yixin, Yang Zhiliang, Ma Binjie, et al. Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height[J]. Journal of China Coal Society, 2020, 45(1):54-65. | |
[12] | 李泽萌. 时间窗设置对综采工作面矿压预测精度的影响研究[J]. 电脑与电信, 2020(4):14-18. |
Li Zemeng. Time window setting on prediction accuracy of rock pressure in fully mechanized working face[J]. Computers and Telecommunications, 2020(4):14-18. | |
[13] | 章黎明. 王家山煤矿大倾角厚煤层综放采场矿压规律研究[J]. 煤炭科学技术, 2007, 35(12):22-26. |
Zhang Liming. Research on ground behavior law offully mechanized caving mining face in deep inclined seam of Wangjiashan Mine[J]. Coal Science and Technology, 2007, 35(12):22-26. | |
[14] | 朱思润, 徐涛. 付村煤矿3_下1007工作面设备运输及安装工艺[J]. 山东煤炭科技, 2021, 39(3):114-115. |
Zhu Sirun, Xu Tao. Equipment transportation and installation technology of 3_Xia1007 face in Fucun Coal Mine[J]. Shandong Coal Science and Technology, 2021, 39(3):114-115. | |
[15] | 郭文彬, 孙志文. 矿山压力与岩层控制原理[J]. 内蒙古煤炭经济, 2017(22):35-45. |
Guo Wenbin, Sun Zhiwen. Principles of mine pressure and strata control[J]. Inner Mongolia Coal Economy, 2017(22):35-45. | |
[16] | 葛靖, 刘子龙. 基于CNN和LSTM的睡眠呼吸暂停检测算法[J]. 电子科技, 2021, 34(2):21-26. |
Ge Jing, Liu Zilong. The algorithm based on CNN and LSTM for sleep apnea syndrome detection[J]. Electronic Science and Technology, 2021, 34(2):21-26. | |
[17] | 冯天晨. 基于深度学习的恶意评论检测[J]. 通讯世界, 2019, 26(3):193-194. |
Feng Tianchen. Malicious comment detection based on deep learning[J]. Telecom World, 2019, 26(3):193-194. | |
[18] | 石文浩, 孟军, 张朋, 等. 融合CNN和Bi-LSTM的miRNA-lncRNA互作关系预测模型[J]. 计算机研究与发展, 2019, 56(8):1652-1660. |
Shi Wenhao, Meng Jun, Zhang Peng, et al. Prediction of miRNA-lncRNA interaction by combining CNN and Bi-LSTM[J]. Journal of Computer Research and Development, 2019, 56(8):1652-1660. |
[1] | ZUO Bin,LI Feifei. An Effective Segmentation Method for COVID-19 CT Image Based on Attention Mechanism and Inf-Net [J]. Electronic Science and Technology, 2023, 36(2): 22-28. |
[2] | ZHAO Wenjun,ZHAI Han,ZHANG Hongyan. Total Variation and Sparsity Regularized Deep Nonnegative Matrix Factorization for Hyperspectral Unmixing [J]. Electronic Science and Technology, 2023, 36(2): 53-60. |
[3] | WU Tong,YU Lianzhi. The Recommendation Algorithm of Extreme Deep Factorization Machine Merged with Attention Network [J]. Electronic Science and Technology, 2023, 36(1): 38-43. |
[4] | BI Jiazhen,SHEN Tuo,ZHANG Xuanxiong. A Research on Distance Measurement Between Trains in Rail Transit Based on Machine Vision [J]. Electronic Science and Technology, 2022, 35(9): 37-43. |
[5] | ZHANG Qiaomu,ZHONG Qianwen,SUN Ming,LUO Wencheng,CHAI Xiaodong. Research on Dynamic Monitoring Method of Pantograph-Net Contact Position in Complex Environment [J]. Electronic Science and Technology, 2022, 35(8): 66-72. |
[6] | ZHAO Xuan,ZHOU Fan,YU Hancheng. Improved YOLOv3 Model Based on New Feature Extraction and Fusion Module [J]. Electronic Science and Technology, 2022, 35(7): 40-45. |
[7] | Yanmei YANG,Zongmao CHENG. Prediction of PM2.5 Based on External Influences and Time-Series Factors [J]. Electronic Science and Technology, 2022, 35(3): 51-57. |
[8] | Peng CHEN,Zilong LIU. Arrhythmia Recognition Based on GAN-CNN [J]. Electronic Science and Technology, 2022, 35(3): 45-50. |
[9] | DENG Lei,SUN Peiyang. Research on Network Public Opinion Monitoring System Based on Deep Learning [J]. Electronic Science and Technology, 2022, 35(12): 97-102. |
[10] | YU Runrun,JIANG Xiaoyan,ZHU Kaiying,JIANG Guanghao. Real-Time Image Semantic Segmentation Based on Contextual Attention Mechanism [J]. Electronic Science and Technology, 2022, 35(12): 57-63. |
[11] | ZHANG Ye,BAO Liang. Research Progress of Service Composition Based on Machine Learning [J]. Electronic Science and Technology, 2022, 35(11): 58-63. |
[12] | ZHANG Wei,LIU Na,JIANG Yang,LI Qingdu. Garbage Detection and Classification Based on YOLO Neural Network [J]. Electronic Science and Technology, 2022, 35(10): 45-50. |
[13] | CHENG Xiaoya,ZHANG Lei. Research on Occluded Face Recognition Method Based on Deep Learning [J]. Electronic Science and Technology, 2022, 35(1): 35-39. |
[14] | ZHAO Chong,CHI Mengmeng,CHU Cong,ZHANG Peng. Research on Motion Simulation and Visual Recognition Algorithm of Guide Dog Walking Mechanism [J]. Electronic Science and Technology, 2021, 34(9): 66-72. |
[15] | MA Lixin,DOU Chenfei,SONG Chencan,YANG Tianxiao. Insulator Nondestructive Testing Based on Feature Fusion CNN [J]. Electronic Science and Technology, 2021, 34(7): 26-30. |
|