[1] |
青晨, 禹晶, 肖创柏, 等. 深度卷积神经网络图像语义分割研究进展[J]. 中国图象图形学报, 2020, 25(6):1069-1090.
|
|
Qing Chen, Yu Jing, Xiao Chuangbai, et al. Deep convolutional neural network for semantic image segmentation[J]. Journal of Image and Graphics, 2020, 25(6):1069-1090.
|
[2] |
陈劲宏, 陈玮, 尹钟. 基于改进ExfuseNet模型的街景语义分割[J]. 电子科技, 2021, 35(6):28-34.
|
|
Chen Jinhong, Chen Wei, Yin Zhong. Semantic segment-ation of streetscape based on improved ExfuseNet[J]. Electronic Science and Technology, 2022, 35(6):28-34.
|
[3] |
Sandler M, Howard A, Zhu M, et al. Mobilenetv2:Inverted residuals and linear bottlenecks[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:4510-4520.
|
[4] |
Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]. Seoul: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019:1314-1324.
|
[5] |
Zhang X, Zhou X, Lin M, et al. Shufflenet:An extremely efficient convolutional neural network for mobile devices[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:6848-6856.
|
[6] |
Yu C, Wang J, Peng C, et al. BiseNet:Bilateral segmenta-tion network for real-time semantic segmentation[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:325-341.
|
[7] |
Li H, Xiong P, Fan H, et al. DFANet:Deep feature aggreg-ation for real-time segmentation[C]. Long Beach: Proc-eedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:9522-9531.
|
[8] |
Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]. Munich: International Conference on Medical Image Computing and Computer-Assisted Intervention,Springer,Cham, 2015:234-241.
|
[9] |
Fu J, Liu J, Tian H, et al. Dual attention network for scene segmentation[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019:3146-3154.
|
[10] |
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]. Honolulu: Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition, 2017:2881-2890.
|
[11] |
Chen L C, Papandreou G, Kokkinos I, et al. Deeplab:Se-mantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4):834-848.
doi: 10.1109/TPAMI.2017.2699184
|
[12] |
Paszke A, Chaurasia A, Kim S, et al. ENet:A deep neural network architecture for real-time semantic segmentation[C]. Honolulu: Proceedings of the IEEE Conferenceon Computer Vision and Pattern Recognition, 2017:253-263.
|
[13] |
Mehta S, Rastegari M, Caspi A, et al. ESPNet:Efficient spatial pyramid of dilated convolutions for semantic segmentation[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:552-568.
|
[14] |
Zhao H, Qi X, Shen X, et al. LCNet for real-time semantic segmentation on high-resolution images[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:405-420.
|
[15] |
Chen L C, Papandreou G, Schroff F, et al. Rethinking a-trous convolution for semantic image segmentation[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:356-368
|
[16] |
Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoderwith atrous separable convolution for semantic imagesegmentation[C]. Munich: Proceedings of the European Conference on Computer Vision, 2018:801-818.
|
[17] |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]. Boston: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015:1-9.
|
[18] |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:2818-2826.
|
[19] |
Ioffe S, Szegedy C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]. Lille: International Conference on Machine Learning, 2015:448-456.
|
[20] |
Chollet F. Xception:Deep learning with depth wise searable convolutions[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Reonition, 2017:1251-1258.
|
[21] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 15(56):3431-3440.
|
[22] |
Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4,inc-eption-resnet and the impact of residual connections on learning[C]. San Francisco: The Thirty-first AAAI Conference on Artificial Intelligence, 2017:4278-4284.
|
[23] |
Li G, Yun I, Kim J, et al. DABNet:Depth-wise asymmetric bottleneck for real-time semantic segmentation[C]. Ca-rdiff: British Machine Vision Conference, 2019:259-271.
|
[24] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
doi: 10.1109/TPAMI.2016.2644615
pmid: 28060704
|
[25] |
Yang M, Yu K, Zhang C, et al. DenseASPP for semantic segmentation in street scenes[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:3684-3692.
|
[26] |
Yu C, Gao C, Wang J, et al. BiseNet v2:Bilateral network with guided aggregation for real-time semantic segmentation[J]. International Journal of Computer Vision, 2021, 129(11):3051-3068.
doi: 10.1007/s11263-021-01515-2
|
[27] |
Wang P, Chen P, Yuan Y, et al. Understanding convolute-on for semantic segmentation[C]. Lake Tahoe: IEEE Winter Conference on Applications of Computer Vision, 2018:1451-1460.
|
[28] |
Romera E, Alvarez J M, Bergasa L M, et al. EFRNet:Effi-cient residual factorized convnet for real-time semantic segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(1):253-272.
|